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ABSTRACT 

This paper presentsmulti-objective genetic algorithm for solving the optimal power flow (OPF) problem. The 

proposed method is employed for optimal adjustment of the power system control variables which involve 

continuous variables of the OPF problem namely active power generation at the PV buses except at the slack 

bus, voltage magnitude at PV buses, tap settings of transformer and shunt VAR compensation. Solution of multi-

objective optimization problem providesa number of trade-off solutions. The decision maker has an option to 

choose a solution among the different trade-off solutions provided in the Pareto-optimal front.The proposed 

method is tested in standard IEEE 30-bus test system with different objective such as fuel cost minimization, 

voltage stability enhancement and transmission losses minimization. The numerical results clearly show that the 

proposed method is capable to produce true and well distributed Pareto-optimal solutions for multi-objective 

OPF problem. 
 

Keywords: Multi-Objective Genetic Algorithm, Multi-Objective Optimization, Optimal Power 
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I. INTRODUCTION 

 

The concept of the optimal power flow (OPF) was first proposed by Carpenters [1] in the early 1960’s based on 

the economic dispatch problem. Optimal Power Flow problem is one of the fundamental issues of power system 

operation, designed and planning. The main purpose of an OPF algorithm is to find steady state operation point 

which minimizes objective function, while satisfying various operating constraints [2]. 

Early, several conventional optimization techniques where apply to solve OPF problem such as linear 

programming (LP), quadratic programming (QP), nonlinear programming (NPL), Mixed Integer Programming 

(MIP), interior point method (IP) and Newton-based method. Generally, most of these approaches have been 

applied to solve OPF problem assuming convex, analytic, differentiable and linear. But unfortunately, OPF 

problem is a highly non-linear and a multi-modal optimization problem, i.e. there exist more than one local 

optimum. Hence, conventional optimization techniques are not suitable for such a problem and conventional 

optimization methods that make use of derivatives and gradients are in general not able to locate or identify the 

global optimum [3]. Hence, it becomes essential to develop optimization techniques that are able to overcome 

these drawbacks and handling such difficulties. Complex constrained optimization problems have been solved 

by many evolutionary computational optimization techniques in the recent years. These techniques have been 

successfully applied to non-convex, non-smooth and non-differentiable optimization problems. Some of the set 

echniquesare genetic algorithm, simulated annealing, particle swarm optimization (PSO), evolutionary 
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programming, hybrid evolutionary programming (HEP), chaotic ant swarm optimization (CASO), Bacteria 

foraging optimization (BFO), Teaching-Learning-Based Optimization (TLBO) [4, 5]. 

Genetic algorithm was first introduced based on Darwin’s principle of evolution. GA is random search 

algorithms based on the principles of genetic variation and natural selection and is considered to offer a high 

probability of finding the global or near global optimum solution of difficult optimization problems. GA 

combine solution evaluation with stochastic genetic operator namely, selection, crossover and mutation to obtain 

near optimality. An optimization problemtreats simultaneously more than one objective function is called as 

multi-objective optimization problem. Multi-objective GAis an extension of classical GA. The main difference 

between a conventional GA and Multi-Objective Genetic Algorithm (MOGA) lies in the fitness assignment to 

an individual. The rest of algorithm issame as that in a classical GA. 

The main aim of this paper is to apply the MOGA to solve the OPF problem.Multi-Objective Genetic Algorithm 

produces multiple solutions in one single simulation run for solving a multi-objective optimization problem. 

Genetic Algorithm toolbox of matlab has been used for solving Multi-Objectiveoptimal power flow(MO-OPF) 

problem. 

 

II. PROBLEM FORMULATION 

 

The main objective of OPF problem solution is to optimize a selected objective function such as fuel cost 

minimization, voltage stability enhancement and transmission losses minimizationvia optimal adjustment of the 

power system control variables, while at the same time satisfying various equality and inequality constraints. 

The problem can be described as follows [6]: 

Mathematically, 

Min F(x,u)(1) 

Subject to: g(x,u) = 0(2) 

h (x,u) ≤ 0 (3) 

Where x is the vector of dependent variables or state variables; u is the vector of independent variables or 

control variables;F is the objective function to be optimized;g is the equality constraints representing nonlinear 

load flow Equations;h is the inequality constraints representing system operating constraints. 

a. State Variables 

In eq (1) – (3), x is the vector of dependent variables in a power system network that includes: 

1. Slack bus generated active power . 

2. Load (PQ) bus voltage . 

3. Generator reactive power output  . 

4. Transmission line loading (line flow) . 

Hence, x can be expressed as:  

(4) 

Where NL,NG and nl are denote the number of load buses,the number of generatorsunitand the number of 

transmission lines, respectively. 

b. Control Variables  



International Journal of Electrical and Electronics Engineers                                 ISSN- 2321-2055 (E)  

http://www.arresearchpublication.com                               IJEEE, Volume 07, Issue 01, Jan- June 2015 

107 | P a g e  
 

In eq (1) – (3), u denotes the independent or control variables of a power system network that 

includes: 

1. Generator active power output  except at slack bus . 

2. Generator bus voltage . 

 3. Transformer taps setting . 

4. Shunt VAR compensation . 

Hence, u can be expressed as:  

(5) 

Where NG, NT and NC are denote the number of generators unit, the number of regulating 

transformers and the number of shunt VAR compensators, respectively. 

c. Objective function 

In this paper, three different objective functions are considered. The objective functions are as follows: 

1. Minimization of total fuel cost  

In this case, the objective function represents the total fuel cost, and it can be expressed asfollows [6]: 

(6) 

Where,  is thetotal fuel cost of the ithgenerating unit. 

The fuel cost characteristics is represented by quadratic functions as: 

(7) 

Where and are the fuelcost coefficients of the ithgenerating unit and is real power output of the ith 

generator. 

2. Voltage stability enhancement  

Voltage stability is one of the important issues in power system planning and operation. The static approach for 

voltage stability analysis involves determination of an index known as voltage collapse proximity indicator. This 

index is an approximate measure of closeness of the system operating point to voltage collapse. There are 

different type methods of determining the voltage collapse proximity indicator. One such method is the L-index 

of the load buses in theSystem proposed in[6]. It is based on power flow analysis and its value ranges from 0 (no 

load condition) to 1 (voltage collapse). The bus with the largestL-index value will be the most vulnerable bus in 

the system. The L-index determine for a power system is briefly discussed below [6, 7]. 

For a power system with NB, NG and NL buses representing thetotal number of buses, the total number of 

generator bus (or PV buses) and the total number of load buses (or PQ bus), respectively, we can separate buses 

into two parts: PQbuses at the head and PVbuses at the tail as follows 

 

Where, ,  and  are sub matrix of .The following hybrid system of equations can be written: 
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Where H matrix is generated by the partial inversion of , and are sub matrix of 

H, , and  are voltage and current vector of generator buses and load buses, respectively 

The matrix H is given by: 

 

Therefore, the L-index denoted by of bus j is represented as follows 

 

For stable situations the condition must not be violated for any of the buses j. Hence, a power system L-

index describing the voltage stability of the complete subsystem is given by 

(12) 

The lower value of   system ismore stable. 

3. Minimization of total power losses 

This objective is to minimize power transmission loss in the system. The power loss is a non- linear function of 

bus voltages. Total power loss in the transmission system can be mathematically represented as follows [6]: 

 

Where,  is the conductance of kth line connected between ith and jth buses: NT is the number of transmission 

lines: is the voltage magnitude at bus i: is the magnitude at bus j:  is the voltage angles at bus i:   is the 

voltage angles at bus j. 

d. Constraints 

OPF constraints can be classified into equality and inequality constraints, as detailed in given below: 

A. . Equality Constraints 

The equality constraints g represented by (2), are typical load flow equations which are defined as follows: 

 Real Power Constraints 

 

 Reactive Power Constraints 

 

Where, ,  and are the voltage magnitudes at bus i and bus jrespectively,NB is the number of 

buses,  is the active power generation at bus i,  is the reactive power generation at bus i, is the active 

load demand at bus i, is the reactive load demand at bus i, and  are the elements of the admittance matrix 

( − + j ) representing the conductance and susceptance between bus i and bus j, respectively. 

B. Inequality Constraints 
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The inequality constraints h represented are the power system operating limits includes: 

i. Generator Constraints 

For all generators including the slack: voltage, active and reactive outputs ought to be restricted by their lower 

and upper limits as follows: 

(16)   

(17)  

(18) 

ii. Transformer Constraints  

Transformer taps have minimum and maximum setting limits as follows: 

(19) 

iii. Shunt VAR compensator constraints 

Shunt VAR constraints must be restricted by their lower and upper limits as follows 

(

20) 

iv.  Security Constraints  

These contain the constraints of voltage magnitude at load buses and transmission line loadings. Voltage 

magnitude of each load bus must be prohibited within its lower and upper operating limits. Line flow through 

each transmission line ought to be restricted by its capacity limits. These constraints can be mathematically 

formulated as follows: 

(

21) 

(22) 

 

III. MULTI-OBJECTIVE GENETIC ALGORITHM 

 

An optimization problem treats simultaneously more than one objective function is called as multi-objective 

optimization problem. Multi-Objective optimization Problem (MOP) can be mathematically presented as [8, 9]: 

Min   

[ (23) 

Subject to: (24) 

Where F(x) consists of n conflicting objective functions, x is the decision vector, is the jth equality constraint 

and  is the kth inequality constraint. 
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For a multi-objective optimization problem, any two solutions and can have any one of two possibilities, 

where one dominates other or not. In a minimization problem, without loss of generality, solution dominates 

if the following conditions are satisfied. 

1. (25) 

2. (26) 

If any one of the above conditions is violated, then the solution does not dominate . If dominates by the 

solution , is called as the non-dominated solution. A solution is said to be Pareto optimal if it is not 

dominated by any other solution in the solution space. A Pareto optimalsolution cannot be refined with respect 

to any objective without worsening at least one other objective. The set of  possible feasible non-dominated 

solutions in 𝑋is referred to as the Pareto optimal set, and for a given Pareto optimal set, the corresponding 

objective function values in the objective space is called the Pareto front. For several optimization problems,all 

Pareto optimal solutions are enormous (maybe infinite). The main goal of a multi-objective optimization 

algorithm is to identify solutions in the Pareto optimal set. However, searching the all Pareto optimal set, for 

many multi-objective problems, is practically impossible due to its size. 

MOGA [9, 10]was the first multi-objective GA that explicitly used Pareto based ranking and niching techniques 

together to encourage the search toward the true Pareto front while maintaining diversity in the population. Once 

fitness has been assigned, selection can be performed and genetic operators are applied as usual. To a solution i, 

a rank equal to one plus the number of solutions   that dominate solution i is assigned: 

(27) 

The rank one is assigned to non-dominated solutions since no solution would dominate a non-dominated 

solution in a population. After ranking, raw fitness is assigned to each solution based on its rank by sorting the 

ranks in ascending order of magnitude. Then, a raw fitness is assigned to each solution by linear mapping 

function. Thereafter, solutions of each rank are considered at a time and their averaged raw fitness is called 

assigned fitness. Thus the mapping and averaging procedure ensures that the better ranked solutions have a 

higher assigned fitness. In order to maintain diversity in the population, niching among solutions of each rank 

are introduced. The niche count is calculated with following equation [9, 10, 11]: 

 

Where,  is the number of solutions in a rankand is the sharing function value of two solution i and j.  

The sharing function  is calculated by using objective function as distance metric as: 

 

The parameter d is the distance between any two solutions in the population and is the sharing parameter 

which signifies the maximum distance between any two solutions before they can be considered to be in the 

same niche. The above function takes a value in [0, 1] depending on the values of and . If is 

used, the effect linearly reduces from one to zero. 
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The normalized distance between any two solutions can be calculated as follows: 

 

Where  and are the maximum and minimum objective function value of the kthobjective. 

In MOGA, the shared fitness is calculated by dividing the fitness of a solution by its niche count. Even though 

all solutions of any particular rank have the identical fitness, the shared fitness value of each solution residing in 

less crowded region has a better shared fitness which produces a large selection pressure for poorly represented 

solutions in any rank. The fitness of the solution is reduced by dividing the assigned fitness by the niche count. 

In order to keep the average fitness of the solutions in a rank same as that before sharing, the fitness values are 

scaled. This rule is continued until all ranks are processed. This paper, tournament selection, BLX-  crossover 

and non-uniform mutation operators are applied to create a new population [12]. 

Best Compromise Solution 

Having obtained the Pareto optimal set, choosing a best compromise solution is important in decision making 

process. In this paper, fuzzy membership approach is used to find a best compromise solution. Due to imprecise 

nature of the decision maker’sjudgement the ith objective function  of individual k is represented by a 

membership function defined as 

 

Where and are the minimum and maximum value of ith objective function among all non-dominated 

solutions, respectively. For each non-dominated solution k, the normalized membership function  is 

calculated as 

 

Where, M is thetotal number of non-dominated solutions; NO is the number of objectives. Finally, the best 

compromise solution is the one achieving the maximum member ship function ( ). 

 

IV. Numerical Results 

 

The proposed MOGA algorithm is tested on the standard IEEE 30-bus test system [13]. This system consists of 

six generators at buses 1, 2, 5, 8, 11 and 13, four transformers with off-nominal tap ratio at lines 6–9, 6–10, 4–

12 and 27–28 and addition, buses 10, 12, 15, 17, 20, 21, 23, 24 and 29 were selected as shunt VAR 

compensation buses for reactive power control. The complete system data with minimum and maximum limits 

of control variables are given in [13]. Bus 1 was taken as the slack bus. The proposed algorithm has been 

applied to solve the OPF problem for several cases with different objective functions. Before MOGA is applied 

to OPF problem, following parameters need to be defined. The number of population NP = 30 andthe number of 

variable = 24. 
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A. Case 1: Fuel cost Vs Transmission line Losses 

In this case, two competing objectives, i.e. fuel cost and transmission linelosses were considered. This multi-

objective optimization problem was solved by the proposed algorithm. The Pareto optimal solution obtained 

with the help of proposed MOGA algorithm is shown in Fig. 1. Pareto optimal solution, it is clear that the 

proposed MOGA method is giving well distributed solutions. The best compromise solution was found with the 

help of fuzzy membership approach. The best solution for minimum fuel cost and minimum loss and the 

compromise solutionare given in Table 1. 

B. Case 2: Fuel cost Vs L-index 

In this case, L-index is considered in place of transmission line losses. The L-index of a bus indicates the 

proximity of voltage collapse condition of that bus. It varies zero (no load case) to one (voltage collapse). These 

two competing objective functions were optimized by the proposed MOGA method. The Pareto optimal solution 

for this case is shown in Fig.2. The best compromise solution for minimum fuel cost and minimum L-index are 

given in Table 1. 
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Fig.1. Pareto Optimal Solutions for Case 1 
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Fig.2. Pareto Optimal Solutions for Case 2 
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Table 1 Simulation Results for IEEE-30 Bus system 

    Control 

variable (p.u.)  

 Initial  Best 

 Cost 

 Best   

Losses 

 Best     

Comp. 

 Best 

 Cost 

 Best  

L-Index 

 Best  

Comp. 

P2 .8000 .4897 .5895 .5675 .4894 .4928 .4900 

P5 .5000 .2342 .3962 .3586 .2149 .2155 .2156 

P8 .2000 .2409 .2877 .2742 .2022 .1967 .2012 

P11 .2000 .1844 .2829 .2719 .1227 .1259 .1223 

P13 .2000 .2030 .2361 .2371 .1201 .1237 .1201 

V1 1.0500 1.0609 1.0508 1.0588 1.0806 1.0788 1.0806 

V2 1.0400 1.0485 1.0207 1.0127 1.0190 1.0270 1.0190 

V5 1.0100 1.0210 1.0162 1.0156 1.0266 1.0290 1.0265 

V8 1.0100 1.0381 1.0349 1.0283 1.0456 1.0469 1.0456 

V11 1.0500 1.0751 1.0433 1.0487 1.0664 1.0704 1.0664 

V13 1.0500 1.0396 1.0504 1.0412 1.0723 1.0716 1.0723 

T11 10780 .9986 1.0158 1.0120 1.0050 1.0036 1.0051 

T12 1.0690 1.0007 1.0260 1.0172 .9925 .9906 .9926 

T15 1.0320 1.0276 1.0233 1.0215 1.0110 1.0138 1.0110 

T36 1.0680 .9793 .9836 .9851 .9701 .9732 .9700 

Qc10 0.0 .0193 .0360 .0357 .0421 .0433 .0419 

Qc12 0.0 .0224 .0304 .0239 .0497 .0499 .0498 

Qc15 0.0 .0408 .0179 .0257 .0345 .0397 .0343 

Qc17 0.0 .0285 .0229 .0232 .0409 .0408 .0409 

Qc20 0.0 .0209 .0236 .0304 .0369 .0389 .0369 

Qc21 0.0 .0154 .0254 .0276 .0500 .0500 .0500 

Qc23 0.0 .0195 .0296 .0310 .0238 .0252 .0239 

Qc24 0.0 .0423 .0329 .0260 .0500 .0500 .0500 

Qc29 0.0 .0340 .0323 .0308 .0411 .0497 .0456 

Fuel Cost($/h) 902.00 807.13 855.37 841.05 800.74 800.81 800.75 

Lmax  0.1772     -     -     - .1296 .1291 .1295 

  5.8423  7.930  5.228  5.6482    -   -     - 

*Bold values represent the best values of the objective functions chosen and best comp.Indicate best 

compromise solution. 

Table 2 

The best compromise solution for case-1 using different multi objective algorithms. 

                  Algorithms                 Fuel cost ($/h)                       Losses (MW) 

MOSPEA [14]               847.01                     5.666 
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NSGA-II  [15]  823.88  5.7699 

          MOGA               841.05                    5.6482 

Table 3 

The best compromise solution for case-2 using different multi objective algorithms. 

                  Algorithms                 Fuel cost ($/h)                       L-index (p.u) 

          MOSPEA  [14]                809.79                     .1146 

MOTLBO [16]  803.63  .1020 

          MOGA               800.75                    .1295 

 

V. CONCLUSIONS 

 

In this paper a multi-objective genetic algorithm (MOGA) has been proposed to solve the multi-objective 

optimal power flow(MO-OPF) problem with many constraints in IEEE 30-bus system. The proposed approach 

successfully applied to solve various types of optimal power flow (OPF) problems with different objective 

function like fuel cost minimization, voltage stability enhancement and transmission losses minimization.The 

proposed approach results are compared with the results reported in the literature.The numerical results show 

that the proposed technique is efficient and outperforms for solving MO-OPF problem. 
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