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ABSTRACT

This paper presentsmulti-objective genetic algorithm for solving the optimal power flow (OPF) problem. The
proposed method is employed for optimal adjustment of the power system control variables which involve
continuous variables of the OPF problem namely active power generation at the PV buses except at the slack
bus, voltage magnitude at PV buses, tap settings of transformer and shunt VAR compensation. Solution of multi-
objective optimization problem providesa number of trade-off solutions. The decision maker has an option to
choose a solution among the different trade-off solutions provided in the Pareto-optimal front.The proposed
method is tested in standard IEEE 30-bus test system with different objective such as fuel cost minimization,
voltage stability enhancement and transmission losses minimization. The numerical results clearly show that the
proposed method is capable to produce true and well distributed Pareto-optimal solutions for multi-objective
OPF problem.

Keywords: Multi-Objective Genetic Algorithm, Multi-Objective Optimization, Optimal Power

Flow,Pareto-Optimal Front.
I. INTRODUCTION

The concept of the optimal power flow (OPF) was first proposed by Carpenters [1] in the early 1960’s based on
the economic dispatch problem. Optimal Power Flow problem is one of the fundamental issues of power system
operation, designed and planning. The main purpose of an OPF algorithm is to find steady state operation point
which minimizes objective function, while satisfying various operating constraints [2].

Early, several conventional optimization techniques where apply to solve OPF problem such as linear
programming (LP), quadratic programming (QP), nonlinear programming (NPL), Mixed Integer Programming
(MIP), interior point method (IP) and Newton-based method. Generally, most of these approaches have been
applied to solve OPF problem assuming convex, analytic, differentiable and linear. But unfortunately, OPF
problem is a highly non-linear and a multi-modal optimization problem, i.e. there exist more than one local
optimum. Hence, conventional optimization techniques are not suitable for such a problem and conventional
optimization methods that make use of derivatives and gradients are in general not able to locate or identify the
global optimum [3]. Hence, it becomes essential to develop optimization techniques that are able to overcome
these drawbacks and handling such difficulties. Complex constrained optimization problems have been solved
by many evolutionary computational optimization techniques in the recent years. These techniques have been
successfully applied to non-convex, non-smooth and non-differentiable optimization problems. Some of the set

echniquesare genetic algorithm, simulated annealing, particle swarm optimization (PSO), evolutionary
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programming, hybrid evolutionary programming (HEP), chaotic ant swarm optimization (CASO), Bacteria
foraging optimization (BFO), Teaching-Learning-Based Optimization (TLBO) [4, 5].

Genetic algorithm was first introduced based on Darwin’s principle of evolution. GA is random search
algorithms based on the principles of genetic variation and natural selection and is considered to offer a high
probability of finding the global or near global optimum solution of difficult optimization problems. GA
combine solution evaluation with stochastic genetic operator namely, selection, crossover and mutation to obtain
near optimality. An optimization problemtreats simultaneously more than one objective function is called as
multi-objective optimization problem. Multi-objective GAis an extension of classical GA. The main difference
between a conventional GA and Multi-Objective Genetic Algorithm (MOGA) lies in the fitness assignment to
an individual. The rest of algorithm issame as that in a classical GA.

The main aim of this paper is to apply the MOGA to solve the OPF problem.Multi-Objective Genetic Algorithm
produces multiple solutions in one single simulation run for solving a multi-objective optimization problem.
Genetic Algorithm toolbox of matlab has been used for solving Multi-Objectiveoptimal power flow(MO-OPF)

problem.
Il. PROBLEM FORMULATION

The main objective of OPF problem solution is to optimize a selected objective function such as fuel cost
minimization, voltage stability enhancement and transmission losses minimizationvia optimal adjustment of the
power system control variables, while at the same time satisfying various equality and inequality constraints.
The problem can be described as follows [6]:

Mathematically,

Min F(x,u)(1)

Subject to: g(x,u) = 0(2)

h (x,u) <0 (3)

Where x is the vector of dependent variables or state variables; u is the vector of independent variables or
control variables;F is the objective function to be optimized;qg is the equality constraints representing nonlinear
load flow Equations;h is the inequality constraints representing system operating constraints.

a. State Variables

Ineq (1) — (3), x is the vector of dependent variables in a power system network that includes:

1. Slack bus generated active power 7, .
2. Load (PQ) bus voltagel’;.
3. Generator reactive power output ¢ .

4. Transmission line loading (line flow) 5.

Hence, x can be expressed as:
X' = [PGIJ “'rL]_ ""'FL_-.;LJ QG]_ QG:;L-,J Sl]_ Sl|]|](4)

Where NL,NG and nl are denote the number of load buses,the number of generatorsunitand the number of
transmission lines, respectively.

b. Control Variables
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In eq (1) — (3), u denotes the independent or control variables of a power system network that
includes:

1. Generator active power output 7; except at slack bus 7, .

2. Generator bus voltageV; .
3. Transformer taps settingT.
4. Shunt VAR compensationg..
Hence, u can be expressed as:
ul =[P .. Pp Vg, o Ve, Ty Tyr Qo Qg ]
(%)
Where NG, NT and NC are denote the number of generators unit, the number of regulating
transformers and the number of shunt VAR compensators, respectively.
c. Obijective function
In this paper, three different objective functions are considered. The objective functions are as follows:
1. Minimization of total fuel cost

In this case, the objective functionF; (x. ! represents the total fuel cost, and it can be expressed asfollows [6]:
Fy(xu) = T, £ (S/h)

(6)

Where,f; is thetotal fuel cost of the ithgenerating unit.

The fuel cost characteristics is represented by quadratic functions as:

fi = ﬂ.i + h'lPGI + l:i PEI :Sf"fh:l (7)

Where 3;. bjand c;are the fuelcost coefficients of the ithgenerating unit and F;;_is real power output of the ith

generator.

2. Voltage stability enhancement

Voltage stability is one of the important issues in power system planning and operation. The static approach for
voltage stability analysis involves determination of an index known as voltage collapse proximity indicator. This
index is an approximate measure of closeness of the system operating point to voltage collapse. There are
different type methods of determining the voltage collapse proximity indicator. One such method is the L-index
of the load buses in theSystem proposed in[6]. It is based on power flow analysis and its value ranges from 0 (no
load condition) to 1 (voltage collapse). The bus with the largestL-index value will be the most vulnerable bus in
the system. The L-index determine for a power system is briefly discussed below [6, 7].

For a power system with NB, NG and NL buses representing thetotal number of buses, the total number of
generator bus (or PV buses) and the total number of load buses (or PQ bus), respectively, we can separate buses

into two parts: PQbuses at the head and PVbuses at the tail as follows
]

_ Vil Yo YLG] [VL -
el Vs Vc.] B [YGL YecllVe (8)
Where,¥;; . ¥; ;Y5 and ¥z are sub matrix of ¥,... The following hybrid system of equations can be written:
(V1] IL] Hyp HLG] [IL -
=1Hl |, |= ; (9
¢ ] [H] Ve Hgp Heel Ve e
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Where H matrix is generated by the partial inversion of¥,..H;; H;;, Hs;and Hzzare sub matrix of

H,V: 1. ¥; and I; are voltage and current vector of generator buses and load buses, respectively

The matrix H is given by:

Z -7 Y )
[H] YorZu Yoo — YorZpYig LL LL S

Therefore, the L-index denoted by L;of bus j is represented as follows

NG
V; e
L;= I_ZHLG"[F:- j=123......NL (11)
i=1 I
For stable situations the condition L; = 1 must not be violated for any of the buses j. Hence, a power system L-

index describing the voltage stability of the complete subsystem is given by

Fao(xu) = Lyg,= max (L), j=1......NL(12)

3. Minimization of total power losses
This objective is to minimize power transmission loss in the system. The power loss is a non- linear function of

bus voltages. Total power loss in the transmission system can be mathematically represented as follows [6]:
NT

Filxu) = z G

k=1

v+ vE + 2|V||[V;| cos(8; — ;) | (13)

Where, &, is the conductance of kth line connected between ith and jth buses: NT is the number of transmission
lines: ¥} is the voltage magnitude at bus i: ¥} is the magnitude at bus j: &; is the voltage angles at bus i: &; is the
voltage angles at bus j.

d. Constraints

OPF constraints can be classified into equality and inequality constraints, as detailed in given below:

A. . Equality Constraints

The equality constraints g represented by (2), are typical load flow equations which are defined as follows:

e Real Power Constraints

NE
PGi - P[:I'I - ‘l'r'lz i‘ri [GI| fDS:::Bii:l + HI| Sln:ﬂ”}] =0 :14}

e Reactive Power Constraints
NE

Qai — Qpi — Vi ) V;[Gy;sin(8;;) — B;;cos(8;)] = 0 (15)
i=1

Where, &; = 6 — 6,1} and V}are the voltage magnitudes at bus i and bus jrespectively,NB is the number of
buses, F;; is the active power generation at bus i,{;; is the reactive power generation at bus i, Fz;is the active
load demand at bus i, @;is the reactive load demand at bus i, &;; andE;; are the elements of the admittance matrix
(¥;j— G;; + jBy;) representing the conductance and susceptance between bus i and bus j, respectively.

B. Inequality Constraints
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The inequality constraints h represented are the power system operating limits includes:

i.  Generator Constraints
For all generators including the slack: voltage, active and reactive outputs ought to be restricted by their lower
and upper limits as follows:

Va]in = VGI = ‘i‘.’:':_‘lmx i=1.....NG

(16)
PEIJin =P, =PE™i=1...NG
(17)
Q" = Qg = Qgi=1.....NG
(18)

ii.  Transformer Constraints
Transformer taps have minimum and maximum setting limits as follows:
MR =T, < T i=1....NT
(19)
iii.  Shunt VAR compensator constraints
Shunt VAR constraints must be restricted by their lower and upper limits as follows
QF™ = Qc, = QB i=1....NC (
20)
iv.  Security Constraints
These contain the constraints of voltage magnitude at load buses and transmission line loadings. Voltage
magnitude of each load bus must be prohibited within its lower and upper operating limits. Line flow through
each transmission line ought to be restricted by its capacity limits. These constraints can be mathematically
formulated as follows:

11'.Ir|_-ll::'llll i .v[.' i ‘Irl!‘];lil_"{ i. — -1 s :qu (
21)

S, <SP i=1...nl

(22)

I11. MULTI-OBJECTIVE GENETIC ALGORITHM

An optimization problem treats simultaneously more than one objective function is called as multi-objective
optimization problem. Multi-Objective optimization Problem (MOP) can be mathematically presented as [8, 9]:
Min

[Flx) = fi(x), ... f(x)] (23)
Subiject to: hy =0 k=1,2,. .....N(24)

Where F(x) consists of n conflicting objective functions, x is the decision vector, g;is the jth equality constraint

and h; is the kth inequality constraint.
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For a multi-objective optimization problem, any two solutions x;and x.can have any one of two possibilities,

where one dominates other or not. In a minimization problem, without loss of generality, solution x;dominates
x - if the following conditions are satisfied.
1. ¥ €f1,2,.. .. N}: £ %)= f( x,)(25)
2. % €1,2,.... N}« £ %) = £( %,)(26)

Ia)

If any one of the above conditions is violated, then the solution x;does not dominate x. If x;dominates by the
solution x4,x4is called as the non-dominated solution. A solution is said to be Pareto optimal if it is not
dominated by any other solution in the solution space. A Pareto optimalsolution cannot be refined with respect
to any objective without worsening at least one other objective. The set of possible feasible non-dominated
solutions in Xis referred to as the Pareto optimal set, and for a given Pareto optimal set, the corresponding
objective function values in the objective space is called the Pareto front. For several optimization problems,all
Pareto optimal solutions are enormous (maybe infinite). The main goal of a multi-objective optimization
algorithm is to identify solutions in the Pareto optimal set. However, searching the all Pareto optimal set, for
many multi-objective problems, is practically impossible due to its size.

MOGA [9, 10]was the first multi-objective GA that explicitly used Pareto based ranking and niching techniques
together to encourage the search toward the true Pareto front while maintaining diversity in the population. Once
fitness has been assigned, selection can be performed and genetic operators are applied as usual. To a solution i,
a rank equal to one plus the number of solutions #; that dominate solution i is assigned:

=1+ ;27

The rank one is assigned to non-dominated solutions since no solution would dominate a non-dominated
solution in a population. After ranking, raw fitness is assigned to each solution based on its rank by sorting the
ranks in ascending order of magnitude. Then, a raw fitness is assigned to each solution by linear mapping
function. Thereafter, solutions of each rank are considered at a time and their averaged raw fitness is called
assigned fitness. Thus the mapping and averaging procedure ensures that the better ranked solutions have a
higher assigned fitness. In order to maintain diversity in the population, niching among solutions of each rank

are introduced. The niche count is calculated with following equation [9, 10, 11]:
nird

nc; = z Sh(dj) (28)
i=1

Where, (7; ] is the number of solutions in a rankand 5 (d;; Jis the sharing function value of two solution i and j.

The sharing functionh 'Z:.::';_i-::' is calculated by using objective function as distance metric as:

dy %
) (1- (=) ifd=e )
Sh(dy)=" o e (29)
1 0 otherwise
The parameter d is the distance between any two solutions in the population and is ... the sharing parameter
which signifies the maximum distance between any two solutions before they can be considered to be in the
same niche. The above function takes a value in [0, 1] depending on the values of =zr.and &;;. If & = 1is

used, the effect linearly reduces from one to zero.
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The normalized distance between any two solutions can be calculated as follows:

) f|:'|_'- . fl:l- 2
. k k .
dii = .Iz (fr:lsx_ fl:;ll'ln) '..30)

3 k=1 ™

Wheref*=* and f£I*** are the maximum and minimum objective function value of the kthobjective.

In MOGA, the shared fitness is calculated by dividing the fitness of a solution by its niche count. Even though
all solutions of any particular rank have the identical fitness, the shared fitness value of each solution residing in
less crowded region has a better shared fitness which produces a large selection pressure for poorly represented
solutions in any rank. The fitness of the solution is reduced by dividing the assigned fitness by the niche count.
In order to keep the average fitness of the solutions in a rank same as that before sharing, the fitness values are
scaled. This rule is continued until all ranks are processed. This paper, tournament selection, BLX- & crossover
and non-uniform mutation operators are applied to create a new population [12].

Best Compromise Solution

Having obtained the Pareto optimal set, choosing a best compromise solution is important in decision making
process. In this paper, fuzzy membership approach is used to find a best compromise solution. Due to imprecise

nature of the decision maker’sjudgement the ith objective function F; of individual k is represented by a

membership function u*defined as

{ 1 F, = Fm©
Fmax _ F. . .
uf = l e g F.":"" FMn o F, < Frax (31)
0 FP&= F

Where F™"and E™* are the minimum and maximum value of ith objective function among all non-dominated
solutions, respectively. For each non-dominated solution k, the normalized membership function u® is

calculated as

NO  k
ko Tizg i

Y TN:Oi |.lE"

Sik=1

1 (32)
Where, M is thetotal number of non-dominated solutions; NO is the number of objectives. Finally, the best

compromise solution is the one achieving the maximum member ship function ( ).

1VV. Numerical Results

The proposed MOGA algorithm is tested on the standard IEEE 30-bus test system [13]. This system consists of
six generators at buses 1, 2, 5, 8, 11 and 13, four transformers with off-nominal tap ratio at lines 6-9, 6-10, 4—
12 and 27-28 and addition, buses 10, 12, 15, 17, 20, 21, 23, 24 and 29 were selected as shunt VAR
compensation buses for reactive power control. The complete system data with minimum and maximum limits
of control variables are given in [13]. Bus 1 was taken as the slack bus. The proposed algorithm has been
applied to solve the OPF problem for several cases with different objective functions. Before MOGA is applied
to OPF problem, following parameters need to be defined. The number of population NP = 30 andthe number of

variable = 24.
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A. Case 1: Fuel cost Vs Transmission line Losses

In this case, two competing objectives, i.e. fuel cost and transmission linelosses were considered. This multi-
objective optimization problem was solved by the proposed algorithm. The Pareto optimal solution obtained
with the help of proposed MOGA algorithm is shown in Fig. 1. Pareto optimal solution, it is clear that the
proposed MOGA method is giving well distributed solutions. The best compromise solution was found with the
help of fuzzy membership approach. The best solution for minimum fuel cost and minimum loss and the
compromise solutionare given in Table 1.

B. Case 2: Fuel cost Vs L-index

In this case, L-index is considered in place of transmission line losses. The L-index of a bus indicates the
proximity of voltage collapse condition of that bus. It varies zero (no load case) to one (voltage collapse). These
two competing objective functions were optimized by the proposed MOGA method. The Pareto optimal solution
for this case is shown in Fig.2. The best compromise solution for minimum fuel cost and minimum L-index are
given in Table 1.

Pareto front

*
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o
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Fig.1. Pareto Optimal Solutions for Case 1
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Fig.2. Pareto Optimal Solutions for Case 2
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Table 1 Simulation Results for IEEE-30 Bus system

http://www.arresearchpublication.com

ISSN- 2321-2055 (E)

Control Initial Best Best Best Best Best Best
variable (p.u.) Cost Losses Comp. Cost L-Index Comp.
P2 .8000 4897 .5895 5675 4894 4928 4900
P5 .5000 .2342 .3962 .3586 2149 2155 2156
P8 .2000 .2409 2877 2742 2022 1967 2012
P11 .2000 1844 .2829 2719 1227 1259 1223
P13 .2000 .2030 .2361 2371 1201 1237 1201
V1 1.0500 | 1.0609 1.0508 1.0588 1.0806 1.0788 1.0806
V2 1.0400 | 1.0485 1.0207 1.0127 1.0190 1.0270 1.0190
V5 1.0100 | 1.0210 1.0162 1.0156 1.0266 1.0290 1.0265
V8 1.0100 | 1.0381 1.0349 1.0283 1.0456 1.0469 1.0456
V1l 1.0500 | 1.0751 1.0433 1.0487 1.0664 1.0704 1.0664
V13 1.0500 | 1.0396 1.0504 1.0412 1.0723 1.0716 1.0723
T11 10780 .9986 1.0158 1.0120 1.0050 1.0036 1.0051
T12 1.0690 | 1.0007 1.0260 1.0172 9925 .9906 .9926
T15 1.0320 | 1.0276 1.0233 1.0215 1.0110 1.0138 1.0110
T36 1.0680 | .9793 .9836 .9851 9701 9732 .9700
Qc10 0.0 .0193 .0360 .0357 0421 .0433 .0419
Qci12 0.0 .0224 .0304 .0239 .0497 .0499 .0498
Qcl5 0.0 .0408 .0179 .0257 .0345 .0397 .0343
Qcl7 0.0 .0285 .0229 .0232 .0409 .0408 .0409
Qc20 0.0 .0209 .0236 .0304 .0369 .0389 .0369
Qc21 0.0 .0154 .0254 .0276 .0500 .0500 .0500
Qc23 0.0 .0195 .0296 .0310 .0238 .0252 .0239
Qc24 0.0 .0423 .0329 .0260 .0500 .0500 .0500
Qc29 0.0 .0340 .0323 .0308 0411 .0497 .0456
Fuel Cost($/h) 902.00 | 807.13 855.37 841.05 800.74 800.81 800.75
Lmax 0.1772 - - - 1296 1291 1295
Pross 5.8423 | 7.930 5.228 5.6482 - - -

*Bold values represent the best values of the objective functions chosen and best comp.Indicate best

compromise solution.

Table 2

The best compromise solution for case-1 using different multi objective algorithms.

Algorithms

Fuel cost ($/h)

Losses (MW)

MOSPEA [14]

847.01

5.666

113 |Page




International Journal of Electrical and Electronics Engineers ISSN- 2321-2055 (E)

http://www.arresearchpublication.com IJEEE, Volume 07, Issue 01, Jan- June 2015
NSGA-II [15] 823.88 5.7699
MOGA 841.05 5.6482
Table 3
The best compromise solution for case-2 using different multi objective algorithms.
Algorithms Fuel cost ($/h) L-index (p.u)
MOSPEA [14] 809.79 1146
MOTLBO [16] 803.63 .1020
MOGA 800.75 1295

V. CONCLUSIONS

In this paper a multi-objective genetic algorithm (MOGA) has been proposed to solve the multi-objective
optimal power flow(MO-OPF) problem with many constraints in IEEE 30-bus system. The proposed approach
successfully applied to solve various types of optimal power flow (OPF) problems with different objective
function like fuel cost minimization, voltage stability enhancement and transmission losses minimization.The
proposed approach results are compared with the results reported in the literature. The numerical results show

that the proposed technique is efficient and outperforms for solving MO-OPF problem.
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