Vol. No.7 Issue 02, July-December 2015

www.arresearchpublication.com

SPMC OPERATING AS A FREQUENCY CHANGER BASED ON FPGA

Mr. Sunil Kumar Jain¹, Mr. Aaditya Vohra², Ms. Priya Jaiswal³

¹Electrical Engineering Department, BBDNITM Lucknow, (India)
^{2,3}Electrical & Electronics Engineering Department, BBDNITM Lucknow, (India)

ABSTRACT

In this paper a Sinusoidal Pulse Width Modulation (SPWM) technique is used to synthesize the output voltage with increased frequency. The power circuit uses Insulated Gate Bipolar Transistor (IGBT) as switching device in implementation. This paper is using Field Programmable Gate Array (FPGA) design for control implementations of the Single-Phase Matrix Converter (SPMC) operating as a Frequency Changer.

Keywords: Sinusoidal Pulse Width Modulation (SPWM), Single-Phase Matrix Converter (SPMC), Field Programmable Gate Array (FPGA), Cycloconverter, Very high speed integrated circuit Hardware Description Language (VHDL)

I. INTRODUCTION

Matrix Converter (MC) is a converter known to offer an "all silicon" solution for direct AC-AC conversion [1, 2], mainly with three-phase circuit topologies [3]. The single-phase version has subsequently been investigated called the Single-phase Matrix Converter (SPMC) for AC-AC conversion [4, 5, 6]. Limited publications had been found on SPMC, definitely negligible on switching strategies due to complex control requirements with its four bidirectional switch topology and the absence of simple safe commutation strategy [7]. Pulse width modulation (PWM) is a widely used technique for controlling the output of static power converters. They have different implementations, dynamics responses and PWM patterns [8].

The design and development of a sinusoidal pulse- width modulation (PWM) generator suitable for Single-Phase Matrix Converter (SPMC) operating as a frequency changer will be presented. It is based on the Xilinx chip XC4005XL Field Programmable Gate Array (FPGA) with IGBTs as the power switching device. The output voltage is synthesized using Sinusoidal Pulse Width Modulation (SPWM). The proposed design enables the modulation index and the switching frequency to be changed externally. Results are provided to demonstrate successful implementation of the design. Prior to hardware implementation, simulations were performed to predict the behaviour.

II. XILINX FPGA DESIGN

The functional block diagram of control algorithm developed for implementation of Xilinx to produce switching pattern for SPMC operating as cycloconverter is as shown in Figure. Within the Xilinx is three major components; a) Desired Output Frequency (DOF), b) Switch Selector Unit (SSU) and c) Commutation Switch

Vol. No.7 Issue 02, July-December 2015

www.arresearchpublication.com

Selector (CSS). The SPWM algorithm is converted into a digital form as illustrated in Figure. Due to their similarity nature of the sine-wave between the negative and positive cycle; a half cycle (positive) could be used to optimise by repeating it in the negative cycle; performing required functions but at reduced overheads.

Before the advent of programmable logic, custom logic circuits were built at the board level using standard components, or at the gate level in expensive application-specific (custom) integrated circuits. The FPGA is an integrated circuit that contains many (64 to over 10,000) identical logic cells that can be viewed as standard components. Each logic cell can independently take on any one of a limited set of personalities. The individual cells are interconnected by a matrix of wires and programmable switches. A user's design is implemented by specifying the simple logic function for each cell and selectively closing the switches in the interconnect matrix. The array of logic cells and interconnects form a fabric of basic building blocks for logic circuits. Complex designs are created by combining these basic blocks to create the desired circuit. The FPGA's function is defined by a user's program rather than by the manufacturer of the device. A typical integrated circuit performs a particular function defined at the time of manufacture. In contrast, the FPGA's function is defined by a program written by someone other than the device manufacturer. Depending on the particular device, the program is either 'burned' in permanently or semi-permanently as part of a board assembly process, or is loaded from an external memory each time the device is powered up. This user programmability gives the user access to complex integrated designs without the high engineering costs associated with application specific integrated circuits.

With successively improving reliability and performance of digital controllers, the digital control techniques have predominated over other analog counter parts. There are many advantages of digital controllers are such as reconfigurability, power saving options, less external passive components and less sensitive to temperature variation.

III. FREQUENCY CHANGER

A classical rectifier-inverter system that could perform frequency conversion can be depicted as shown in Figure 1, where the use of storage device for the DC link is necessary for operation. A direct AC-AC converter on the other hand converts a fixed frequency fixed voltage input into a variable frequency variable voltage output without the use of intermediate storage device. Increased frequency operation of AC-AC conversion can be illustrated ideally as shown in Fig. 2 and maybe implemented using direct AC-AC converter for electronic transformer operation [9], adjustable speed drives [10], induction heating or other applications.

Vol. No.7 Issue 02, July-December 2015

www.arresearchpublication.com

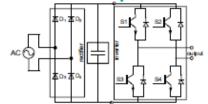
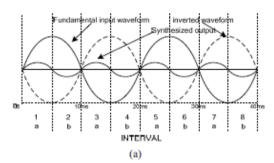



Fig. 1: Classical Rectifier-Inverter AC-AC Converter

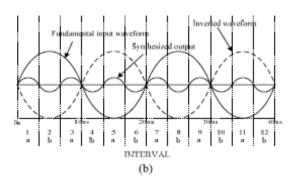


Fig. 2: Increased Frequency Operation (a) 100 Hz (b) 150 Hz

IV. SINGLE-PHASE MATRIX CONVERTER

The SPMC topology with its 4 bi-directional switches and its individual power switches; used in this work is as shown in Figs. 3 and 4 respectively; each capable of conducting current in both directions, blocking forward and reverse voltages [7] with the associated safe commutation switching sequence as illustrated in Figs. 5 to 8 is used. These avoid the occurrence of switching transients relating to use of reactive loads available during switch turn-off and commutation. To synthesize a variable voltage output the SPWM as illustrated in Fig. 9 is used. The switching sequence for operation of SPMC as the frequency changer with increases in frequency from an input of 50Hz to an output of 100Hz and 150Hz is tabulated in table with its associated illustrations as shown in Figs. 10.

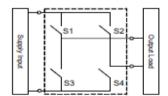
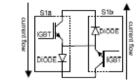



Fig. 3: SPMC circuit configuration

018 01b 00s 00b

Fig.4: Bi-directional switch module

Fig. 5: Positive Cycle (State 1)

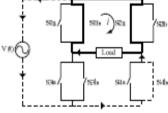
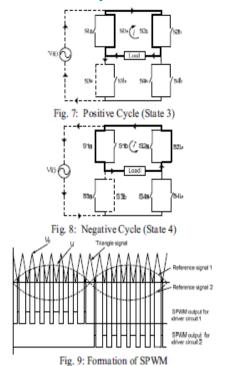
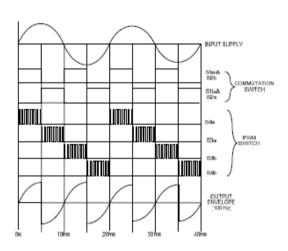



Fig.6: Negative Cycle (State 2)


Vol. No.7 Issue 02, July-December 2015

www.arresearchpublication.com

SEQUENCE OF SWITCHING CONTROL Input PWM Output Commutation State Frequency 1 S4a Sla & S2b 50 Hz 2 2 S4b S1b & S2a 1 1 S4 a S1a & S2b 2 3 S3 a S1b & S2a 100 Hz 3 4 S3Ъ Sla & S2b 4 2 S4b S1b & S2a 50 Hz 1 S4a S1a & S2b 2 3 S1b & S2a S3 a 1 3 S4a Sla & S2b 150 Hz 4 2 S4b S1b & S2a 4 5 S3h S1a & S2b 2 S4b S1b & S2a

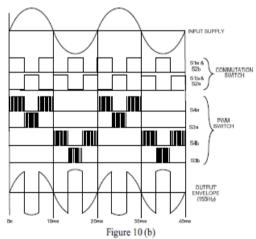


Figure 10 (a)

Figure 10: Switching illustration (a)100 Hz (b)150 Hz

V. CONCLUSION

Experience in designing the FPGA for implementation of frequency changer using matrix converter has been presented. It has been shown that the FPGA could effectively be used in SPMC control with the four bidirectional switching arrangements. The overall system is compact with no external memory system required.

REFERENCES

[1] M. Venturini, "A New Sine Wave in Sine Wave Out, Conversion Technique Which Eliminates Reactive Elements," Proceedings IEEE Powercon 7, 1980, pp.E3_1-E3_15.

Vol. No.7 Issue 02, July-December 2015

www.arresearchpublication.com

- [2] L. Gyugyi, and B.R. Pelly, "Static Power Chargers, Theory, Performance and Application," John Wiley & Son Inc, 1976.
- [3] Hanafi, H.M.; Hamzah, N.R.; Saparon, A.; Hamzah, M.K.; "Improved switching strategy of single-phase matrix converter as a direct AC-AC converter", 3rd IEEE Conference on Industrial Electronics and Applications, 2008. ICIEA 2008. 3-5 June 2008 Page(s):1157 – 1162
- [4] A. Zuckerberger, D. Weinstock, A. Alexandrovitz, "Single-phase Matrix Converter," IEE Proc. Electric Power App, Vol.144 (4), Jul 1997 pp. 235-240. [5] S.H. Hosseini, E. Babaei, "A new generalized direct matrix converter," IEEE International Symposium of Industrial Electronics, 2001. Proc. ISIE 2001. Vol(2), pp.1071-1076.
- [6] A. Koei and S. Yuvarajan, "Single-Phase AC-AC Converter Using Power Mosfet's," IEEE Transaction on Industrial Electronics, Vol. 35, No.3, August 1988, pp.442-443.
- [7] Z. Idris, M.K. Hamzah, M.F. Saidon, "Implementation of Single- Phase Matrix Converter as a Direct AC-AC Converter with Commutation Strategies";37th IEEE Power Electronics Specialists Conference, 2006. PESC06. 18-22 June 2006 Page(s):1 7.
- [8] A. M. Omar, "The Three-Phase Single Stage Flyback Converter," University of Malaya Ph.D Thesis 2002.
- [9] Kang, M.; Enjeti, P.N.; Pitel, I.J.; "Analysis and design of electronic transformers for electric power distribution system", IEEE Transactions on Power Electronics, Volume 14, Issue 6, Nov. 1999 Page(s):1133 – 1141.
- [10] S Sünter, Ö Aydo□ mu□, "Implementation of a sigle-phase matrix converter induction motor drive", Electrical Engineering (Archiv fur Elektrotechnik) Springer Berlin / Heidelberg, Volume 90, Number 6 / June, 2008 pp : 425-433.
- [11] Nguyen-Quang, N.; Stone, D.A.; Bingham, C.; Foster, M.P.; "Comparison of single-phase matrix converter and H-bridge converter for radio frequency induction heating", European Conference on Power Electronics and Applications, 2007 2-5 Sept. 2007 Page(s):1 9.
- [12] Y. -Y. Tzou, H. -J. Hsu, "FPGA based SVPWM Control IC for PWM Inverter," IEEE Trans. On Power Electronics, April 10, 1997, pp: 138-143.
- [13] N.A Rahim, T.C. Green, B.W. Williams, "PWM ASIC Design for the Three-Phase Bidirectional Buck Converter," Int. J. Electronics, 1996, Vol. 81, No.5, pp. 603-615.
- [14] A.M. Omar, N.A. Rahim, "FPGA-based ASIC design of the three- phase synchronous PWM flyback converter," IEE Proceedings on Electric Power Applications, Vol. 150, Issue 3, May 2003 pp. 263-268.
- [15] M.K. Hamzah, Z. Idris, A. Saparon and M.S Yunos, "FPGA Design of Single-phase Matrix Converter Operating as a Frequency Changer "2nd IEEE International Conference on Power and Energy (PECon 08), December 1-3, 2008, Johor Baharu, Malaysia.

Vol. No.7 Issue 02, July-December 2015

AUTHOR PROFILE

Mr. Sunil Kumar Jain He is an Asst. Professor in Electrical Engg. Deptt. at BBDGEI (BBD NITM) Lucknow. He is a member of IEEE. He received his M.Tech with Power Electronics & ASIC Design from MNNIT Allahabad in 2011. He received his B.Tech with Electrical Engg. from M.M.M. Engg. College Gorakhpur in 2009.

Mr. Aaditya Vohra He is a Lecturer in Electrical & Electronics Engg. Deptt. at BBDGEI (BBD NITM) Lucknow. He received his B.Tech. from BBDNIIT Lucknow.

Ms. Priya Jaiswal She is a Lecturer in Electrical & Electronics Engg. Deptt. at BBDGEI (BBD NITM) Lucknow. She received his B.Tech. from ITM Muradabad.