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ABSTRACT 

The problem of choosing an optimal transmission network expansion policy is an extremely complex problem 

that has not yet been satisfactorily solved. In the last years, several techniques have been proposed to solve 

transmission expansion problem. In particular, metaheuristic techniques have been successful in tackling power 

systems related problems, and constitutes a serious option when one has to solve complex optimization. The 

main objective of the proposed problem is to minimize investment cost by finding the location, installation of 

new transmission lines required to ensure that the power system meets the forecasted demand in the most 

economic and reliable way. In this paper, both Particle swarm Optimization (PSO) & Genetic Algorithm (GA) 

is applied to classical dc model for obtaining optimal plan. The proposed algorithms have been successfully 

applied to Garver’s 6-bus and IEEE 14-bus test system and their performance and results has been compared 

with each other. The comparison results testify to the feasibility and efficiency of the developed algorithm in 

solving the transmission expansion planning problem. 

Keywords: Genetic Algorithm, Metaheuristic, Optimal, Particle Swarm Optimization, STNEP. 

 

I. INTRODUCTION 

 

Transmission expansion planning (TEP) is one of the important decision-making activities in electric utilities. 

The TEP problem consists of determining all the changes needed in the transmission system infrastructure, i.e. 

additions, modifications and/or replacements of obsolete transmission facilities, in order to allow the balance 

between the projected demand and the power supply, at minimum investment and operational costs. However, 

cost effective transmission expansion planning becomes one of the major challenges in power system 

optimization due to the nature of the problem that is  complex, large-scale, difficult, and nonlinear and 

generally, can be classified as static or dynamic [1]. There are several methodologies proposed in the specialized 

literature to solve the Transmission network expansion planning (TNEP) problem. Initially, Garver[2] proposes 

a linear power flow estimation method to efficiently determine a preliminary network that can be used to 

determine the optimal network. In constructive heuristic algorithms [3]–[5] have been used to solve the TNEP 

problem. Mathematical models based on classical optimization techniques, such the Benders’ decomposition 

[6]–[8] and branch and bound methods [9], [10], have also been used to solve the TNEP problem. Intelligent 

metaheuristic algorithms such as (1) simulated annealing, (2) tabu search, (3) harmony search algorithm and (4) 

genetic algorithms, have been proposed in [11]–[15], respectively, to solve  TNEP problem. 

 
 

http://www.hindawi.com/journals/jece/2012/781041/#B3
http://www.hindawi.com/journals/jece/2012/781041/#B5
http://www.hindawi.com/journals/jece/2012/781041/#B6
http://www.hindawi.com/journals/jece/2012/781041/#B8
http://www.hindawi.com/journals/jece/2012/781041/#B9
http://www.hindawi.com/journals/jece/2012/781041/#B10
http://www.hindawi.com/journals/jece/2012/781041/#B11
http://www.hindawi.com/journals/jece/2012/781041/#B14


International Journal of Electrical and Electronics Engineers                            ISSN- 2321-2055 (E)  

http://www.arresearchpublication.com                          IJEEE, Volume 07, Issue 01, Jan- June 2015 

550 | P a g e  

 

 

Classical methods demand large computing time due to the dimension challenge present in the transmission 

planning   problem. The use of metaheuristic techniques has been very attractive since they are able to find good 

feasible solutions, moderate computational effort depending on the size of the system and the technique used to 

solve the problem. Nowadays, novel meta-heuristic techniques like PSO and GA have been successful in 

tackling power systems related problems. The theory of GA can be found in [16]. The strength of GA’s is that 

they are free from limitations about the search space, and they are very flexible in the choice of an objective 

function and can work on very large and complex spaces. Compared with other techniques,  PSO concept is 

simple, and its superiority has been proven in many different application areas [17]. In this paper, the 

transmission network planning is first formulated as a mixed integer, non-linear programming problem using 

DC model and then solved with the application of a genetic algorithm and PSO. The performances of both 

algorithms are tested on Garver’s 6-bus system and IEEE 14-bus test system. This paper focus on the 

comparison and performance of the two algorithms on basis of optimal network expansion and minimum 

investment cost. Including introductory part Paper is divided into following sections:  Section 2. details the 

mathematical formulation of the TEP. Section 3. gives the overview of PSO and GA techniques with their 

implementation to formulated TEP problem. Finally, Section 4 includes two Case Studies based on the Garver’s 

system and on the IEEE 14 bus test system and Section V presents the most relevant conclusions.  

 

II. MATHEMATICAL FORMULATION 

 

Normally, the TEP problem can be formulated by using a mathematical model called the DC power flow model. 

It is a nonlinear mixed-integer problem with high complexity, especially for large-scale realistic transmission 

networks. In this paper, the classical DC power flow model is applied for static TEP [18] and the objective 

function is formulated as follows: 

                                                                                  (1) 

where , and  represent, respectively, investment  cost of  the transmission,  circuit  cost,  

which is a candidate for addition to the branch i–j and the number of circuits added to the branch i–j. Here Ω is 

the set of all candidate branches for expansion. The objective function (1) represents the capital cost of the 

newly installed transmission lines, which has some restrictions. These constraints must be included in 

mathematical formulation to ensure that the obtained solutions satisfy transmission line planning requirements. 

These constraints can be formulated in the following (2) – (7).    

2.1 DC Power Flow Node Balance Constraint 

The conservation of power at each node is represented by this linear inequality constraint:  

                                                                                         (2) 

Where , d and B are respectively, the real power generation vector in the existing power plants, the real load 

demand vector in all network nodes and the susceptance matrix of the existing and added lines in the network. 

Here  is the bus voltage phase angle vector. 

2.2 Power Flow Limit on Transmission Lines Constraint 

In order to limit the power flow for each path, the inequality constraint is as follows: 

                                                                               (3) 

In the DC power flow model, each element of the branch power flow in constraint (3) can be calculated by using 

(4): 
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                                                                        (4) 

 Where , ,  and  represent, respectively, the total branch power flow in the branch i–j, the 

maximum power flow in the branch i–j, the number of circuits which is to be added  to the i-j branch, the 

number of circuits in the original base system and  reactance in the i-j branch. Here and  are the voltage 

phase angle of the terminal at ith and jth bus respectively. 

2.3    Power Generation Limit Constraint 

In this paper, resizing of the generation is considered in the TEP problem. Therefore the limit of power 

generation has to be included in the TEP constraints and is represented as follows: 

                                                                       (5) 

where and  are the real power generation at node i.e. the lower and upper real power generation 

limit at node i respectively. 

2.4   Right-of-Way Constraint 

It is significant for an accurate TEP that planners need to know the exact location and capacity of the newly 

required circuits. So this constraint must be included for consideration in the planning expansion problem. In 

Mathematical form, this constraint defines the new circuit location and the maximum number of circuits that can 

be installed in a specified location. It can be represented as follows: 

                                                                     (6) 

where and  represent the total integer number of circuits which is to be added to the i–j branch and the 

maximum number of circuits that can be added to the i–j branch  respectively. 

2.5 Bus Voltage Phase Angle Limit Constraint 

The bus voltage magnitude is not a factor in this analysis since a DC power flow model is used. The voltage 

phase angle is included as a TEP constraint and the calculated phase angle should be less than the predefined 

maximum phase angle: 

                                                               (7) 

2.6 Fitness Function 

 Fitness Function  for the TEP problem is as follows: 

                                                                (8) 

Where, 

 

 is number of constraints.  is violation of ith constraint in percentage.   is the penalty factor.  

III. OVERVIEW OF PSO AND GA ALGORITHM 

 

Particle swarm optimization algorithm, which is tailored for optimizing difficult numerical functions and is 

based on the metaphor of human social interaction, is capable of mimicking the ability of human societies to 

process knowledge [19]. The main roots of PSO are artificial life and evolutionary computation. In a PSO 

system, each particle flies through the multidimensional search space, adjusts its position in search space 

according to its own experience and that of neighbor particles [20]. Its key concept is that the potential solutions 
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are flown through hyperspace and are accelerated towards better or more optimum solutions. In PSO, the 

position of each agent is represented in X–Y plane with position ( , ), x (velocity along X-axis), and y 

(velocity along Y-axis). Modification of the agent position is realized by the position and velocity information. 

Bird blocking optimizes a certain objective function. Each agent knows its best value so far, called ‘Pbest’, 

which contains the information on position and velocities. This information is the analogy of personal 

experience of each agent. Moreover, each agent knows the best value so far, in the group ‘Gbest’ among Pbest 

.This information is the analogy of knowledge, how the other neighboring agent shave performed. Each agent 

tries to modify its position by considering current positions ( , ), current velocities ( x, ), the individual 

intelligence (Pbest), and the group intelligence (Gbest).  

The following equations are utilized, in computing the position and velocities, in the X–Y plane:  

                                     (9) 

                                                                                                                                        (10) 

where  is the velocity of (k+1)th iteration of ith individual,  is the velocity of kth iteration of ith individual, 

ω is the inertial weight, ,  are the positive constants, having values [0, 2], ,  are the random 

numbers selected between 0 and 1, Pbesti is the best position of the ith individual,  is the best position among 

the individual (group best) and is the position of ith individual at kth iteration.  

The velocity of each agent is modified according to (9) and the position is modified according to (10). The 

weighting factor is modified using (11) to enable quick convergence:  

                                                                                                                   (11) 

is the initial weight,  is the final weight,  is the current iteration number and  is the 

maximum iteration number. 

3.1 Implementation of PSO to TEP Problem 

This section provides application of PSO algorithm to solve STNEP (Static  Transmission  Network 

expansion Planning) problem as follows: 

Step 1: Define input parameters with all constraints for the swarm. 

Step 2: Initialize the position (Line to be added) for all particles randomly with satisfying all the constraints. 

Step 3: Calculate the fitness value (cost) of each particle in the swarm using equation (8). 

Step 4: Compare the fitness value of each particle found in step 4 with Pbest of each particle. Update Pbest of a   

particle if its fitness is greater than its Pbest. 

Step 5: Update Gbest if any particle has greater fitness than fitness of current Gbest. 

Step 6: Update the inertia weight ‘ω’ by using (11). 

Step 7: Modify the velocity of each particle by (9).  

Step 8: Modify the position of each particle by using (10) with the updated velocity in step 7. 

Step 9: Check iteration counter, if it reaches its maximum then go to step 10, else go to step 3. 

Step 10: The swarm that generates the latest Gbest  in step 5 is the optimal value. 

3.2 Genetic Algorithm 

The GA is a methodology that solves combinatorial optimization problems with excellent solutions and low 

computational cost, especially for medium and large problems. It is based on the principle of natural selection 

that occurs in nature, in which more adapted individuals have more chances to survive and transmit their genetic 

code to their offspring. The genetic algorithm generally includes the three fundamental genetic operators of 
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reproduction, crossover and mutation. These operators conduct the chromosomes toward better fitness.  

Crossover is the main genetic operator that allows information to be exchanged between individuals in the 

population.  

Mutation operator is to prevent the permanent loss of any particular bit values (genes), as without mutation there 

is no possibility of re-introducing a bit value that is missing from the population.  

3.3 Implementation of GA to TEP Problem 

The application of GA to solve STNEP problem is    explained as follows: 

Step 1: Specify input parameters with all constraints to     generate chromosomes. Specify the control 

parameters (population size, recombination rate, mutation rate,   etc.). 

Step 2: Specify genetic characteristics of the algorithm: codification type, initial population assembly, selection 

type, and so forth. 

Step 3: Initialize population (Line to be added) randomly satisfying all constraints and evaluate it to become the 

current population.  

Step 4: Assign fitness value to the entire population corresponding to the objective function. 

Step 5: Implement a selection to choose only two generating solutions. Selection operator in this analysis used 

is tournament selection. 

Step 6: Implement the recombination and preserve an offspring. 

Step 7: Implement the mutation of the preserved offspring. 

Step 8: Evaluate fitness of final population consisting of chromosomes of best solutions. 

Step 9: Check generation count, if it reaches its maximum then go to step 10, else go to step 5. 

Step 10: Final population consisting of chromosomes with best solutions is the optimal value.  

Table 1 and Table 2 gives the details of the value of parameters used in PSO and GA for both test system. 

Table 1: Parameter values of PSO                          Table 2: Parameter values of GA 

       

IV. RESULT AND DISCUSSION 

 

STNEP problem is solved for two test cases by applying proposed algorithms and is implemented in Matlab 7.9. 

To validate the performance of both algorithms the results obtained are compared with each other. The best 

results for optimal investment cost, Cinv is in US $ obtained by proposed algorithms after 20 trial runs and 100 

iterations. Penalty factor in both the test systems is taken as 2. 

4.1 Garver’s 6 bus system 

Garver’s system is used as a first test system in this paper which comprises of 6 buses and 8 branches. All the 

necessary system data can be found in [21]. Fig.1 and Fig. 2 shows cost convergence characteristic of GA and 

PSO for this system.                                                     
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Fig. 1 Cost convergence characteristic of GA.                      Fig. 2    Cost convergence characteristic of PSO 

4.2 IEEE 14 bus system 

The second test system is IEEE 14-bus system consisting of 14 buses and 20 existing branches. The system data 

is available in [21]. Fig 3 and Fig. 4 shows the comparison of cost convergence of GA and PSO for IEEE 14 

Bus system.  TABLE 3 gives the comparison of both the algorithms in terms of best cost for the optimal plan 

and Elapsed time for processing of both algorithms. Finally, TABLE 4 emphasis on the optimal expansion plan 

for both test system using GA and PSO.  
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    Fig. 3 Cost convergence characteristic of GA                 Fig. 4 Cost convergence characteristic of PSO 

Table 3 

Comparison of PSO and GA 

 

COMPARSION BASIS 

 

GARVER’S 6 BUS SYSTEM IEEE  14 BUS SYSTEM 

PSO GA PSO GA 

BEST COST,US $ 
200 200 1637.3 

 

1659.2 

CPU TIME IN SECONDS 1.660 4.667 11.831 13.190 
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Table 4 

Optimal Expansion Plan for Garver’s 6 Bus System and IEEE 14 Bus System 

 

V. CONCLUSION 

An optimized plan is acquired with lower investment cost with equality and inequality constraints with both the 

algorithms. Also, by comparing the results of the proposed methods, it can be concluded that precision and 

convergence speed of PSO is more than GA. Computational time required by PSO is very less as compared to 

GA for both test system. Experimental results show that For GA it is 4.667 for Garver’s six bus system and 

13.190 for IEEE 14 bus system, whereas for PSO it is very less i.e. 1.660 for 6 bus system and 11.831 for 14 bus 

system. Similarly best cost in US $ for Garver’s 6 bus system for both GA and PSO is same i.e. 200. But for 

IEEE 14 bus system, best cost in US $, for PSO is comparatively less i.e. 1637.3 US $ than GA i.e. 1.659.2 US 

$. Additional line requirement is less for PSO than GA. PSO is very simple, flexible, easy to implement and it 

needs fewer parameters than GA. For Garver’s six bus system, optimal expansion plan is same for both 

algorithms. But for IEEE 14 bus system, expansion plan for PSO is more optimal than GA. Based on 

experimentation results, it can be concluded that PSO has better results than GA.    
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