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ABSTRACT 

There are several approaches of feature extraction algorithms in speech recognition, e.g. Mel frequency 

cepstral coefficients (MFCC) [1], perceptual linear prediction (PLP) [2] and power-normalized cepstral 

coefficients (PNCC) [3]. PNCC a new feature extraction algorithm based on auditory processing is described in 

this paper. The new features of PNCC processing include the use of a power-law nonlinearity that has been 

replaced by the traditional log nonlinearity used in MFCC coefficients. There is use of medium-time power 

analysis, in which environmental parameters are estimated over a longer duration than is commonly used for 

speech, as well as frequency smoothing. PNCC is basically used for the improvement in recognition accuracy in 

noisy conditions. Paper shows the Features extracted using PNCC and impoved recognition accuracy using PNCC 

algorithm.The related results are checked based on  subjective measure. In  subjective measure SNR, Peak 

Signal-to-Noise Ratio (PSNR), Segmental-SNR and Mean Square Error (MSE),Root mean square 

error(RMSE)are assumed. 

Keywords: Speech recognition, feature extraction, Mel frequency cepstral coefficients, Signal to 

noise ratio, Peak signal to noise ratio, Mean square error, automatic speech recognition. 

 

I. INTRODUCTION 

Nowadays the performance of speech recognition systems in acoustical environments has drastically improved. 

Most speech recognition systems remain sensitive to the nature of the and their performance decreases sharply 

in the presence of sources of degradation such as additive noise, linear channel distortion, and reverberation. 

According to the speech recognition process, recognition technology can be divided into four classifications. 

Noise reduction in time-frequency domain, such as spectral subtraction and wiener filter, is the earliest 

technology. To compensate the noise in feature level is the second classification. Vector Taylor series (VTS) [1] 

is a popular method in this category. The third classification is noise compensation in model level. One of the 

most challenging problem is that recognition accuracy degrades significantly if the test environment is different 

from the training environment and if the acoustical environment includes disturbances such as additive noise, 

channel distortion, speaker differences, reverberation. 

The presently  developed systems for automatic speech recognition are based on two types of features mel 

frequency cepstral coefficients (MFCC) [2] and perceptual linear prediction (PLP) coefficients [4] Spectro-

temporal has been observed that two-dimensional Gabor filters provide a reasonable approximation to the 

spectro temporal response, which has leads to various approaches to extract features for speech recognition.[4] 

This paper describe the brief introduction of an additionalfeature set for speech recognition referred as power 

normalized cepstral coefficients (PNCC) and implementation of MFCC speech recognition. Mel Frequency 

cepstral Coefficients (MFCC) is a widely used feature extraction method implemented in multiple ways. Here 
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MFCC for speech recognition system is tested using Matlab 2014 software,which is also used in therecognition 

tests.The development of PNCC feature extraction was motivated by a desire to obtain a set of practical features 

for speech recognition that are more robust with respect to acoustical variability in their native form, without 

loss of performance when the speech signal is undistorted, and with a degree of computational complexity that 

is comparable to that of MFCC and PLP coefficients. While many of the attributes of PNCC processing have 

been strongly influenced by consideration of various  attributes of human auditory processing. There is one 

approach that provides pragmatic gains in robustness at small computational cost over approaches that are more 

faithful to auditory physiology in developing the specific processing that is performed. 

 

II. LITERATURE SURVEY 

Chanwoo Kim and Richard M. Stern, “Power-Normalized Cepstral Coefficients (PNCC) For Robust Speech 

Recognition"[1] states the new feature extraction algorithm called Power Normalized Cepstral Coefficients 

(PNCC) that is motivated by auditory processing. Major new features of PNCC processing include the use of a 

power-law nonlinearity that replaces the traditional log nonlinearity used in MFCC coefficients, a noise-

suppression algorithm based on asymmetric filtering that suppresses background excitation, and a module that 

accomplishes temporal masking. 

Kuansan Wang and Shihab Shamma,  “Self-Normalization and Noise-Robustness in Early Auditory 

Representations," [2] address the   contribution of operations to the formation of robust and perceptually 

significant representation in the early auditory system. The auditory representation of the acoustic spectrum is 

effectively a self-normalized spectral analysis, i.e. the auditory system computes a spectrum divided by a 

smoothed version of itself. Such a self-normalization induces significant   such as spectral shape enhancement 

and robustness against scaling and noise corruption. 

P. J. Moreno, B. Raj, and R. M. Stern,[3] presents the use of a Vector Taylor series(VTS) expansion to 

characterize efficiently and accurately the impacts on speech statistics of unknown additive noise and unknown 

linear filtering in a transmission channel. The VTS approach is computationally efficient. It can be applied 

either to the incoming speech feature vectors, or to the statistics representing these vectors. In the first case the 

speech is compensated and then recognized in the second case HMM statistics are modified using the VTS 

formulation. Both approaches use only the actual speech segment being recognized to compute the parameters 

required for environmental compensation. 

Li Deng, JashaDroppo, and Alex Acero, “Estimating Cepstrum of Speech Underthe Presence of Noise Using a 

Joint Prior of Static and Dynamic Features,"[6] presents a new algorithm for statistical speech feature 

enhancement in the cepstral domain. The algorithm exploits joint prior distributions in the clean speech model, 

which incorporate both the static and frame-differential dynamic cepstral parameters. Clean speech given the 

noisy observation are computed using a linearized version of a nonlinear acoustic distortion model, and, based 

on this linear approximation, the conditional minimum mean square error (MMSE) estimator for the clean 

speech feature is derived. 

P. Pujol, D. Macho, and C. Nadeu [7] focuses on the recursive updating of MVNparameters, paying attention to 

the involved algorithmical delay. First, there is a decoupling of the look-ahead factor and the initial estimation 

of mean and variance, and latter there is a key factor for the recognition performance. Then, several kinds of 
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initial estimations that make sense in different application environments are tested, and their performance is 

compared. 

Teddy Surya Gunawan and Eliatham by Ambikairajah, “A new forward maskingmodel and its application to 

speech enhancement" [8] States a new forward masking model, which is applied to speech enhancement. The 

model develops a novel expression for forward masking, where the parameters are related to the masker level, 

the delay and the frequency obtained by curve cutting the psychoacoustic data. It Provides significant 

improvements over existing speech enhancement methods, when tested with speech signals corrupted by various 

noises at very low signal to noise ratios. 

A. Schwarz, B. Mertsching M. Brucke, W. Nebel [9] states that application of themodel is used to determine 

optimized word lengths ina hardware. The development of the perception model as a FPGA/ASIC for a target 

system, provides efficient co-processing power and allows real time implementations of complex auditory-based 

speech processing algorithms. 

Samuel Thomas, Sriram Ganapathy,and Hynek Hermansky," Recognition of Reverberant Speech Using 

Frequency Domain Linear Prediction"[11] presents a feature extraction technique based on modeling temporal 

envelopes of the speech signal in narrow sub-bands using frequency domain linear prediction (FDLP). FDLP 

provides an all-pole approximation 

 

III. STRUCTURE OF PNCC ALGORITHM 

 

Fig.1 Block diagram of PNCC Algorithm. 

Figure 1 shows   the structure of conventional PNCCprocessing concepton the basis of recognition accuracy, 

which is introduce in this paper. The major innovations of PNCC processing include the redesigned nonlinear 

rate-intensity function, along with the series of processing elements to suppress the effects of background 

acoustical activity based on medium-time analysis. As in figure, the initial processing stages of PNCC 

processing are similar to the corresponding stages of MFCC and PLP analysis, except that the frequency 

analysis is performed using gammatone filters. This is followed by the series of nonlinear time-varying 
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operations that are performed using the longer-duration temporal analysis that accomplish noise subtraction as 

well as a degree of robustness with respect to reverberation. The final stages of processing are also similar to 

MFCC and PLP processing, with the exception of the carefully-chosen power-law nonlinearity with higher 

exponent. 

 

III. COMPONENTS OF PNCC PROCESSING 

1.1 Initial Processing 

In MFCC features, a pre-emphasis filter of the form H(z) = 1 − 0.97z−1 is applied. A short-time Fourier 

transform (STFT) is performed using Hamming windows of duration 25.6 ms, with 10 msbetween frames, using 

a DFT size of 1024. Spectral power in 40 analysis bands is obtained by weighting the magnitude-squared STFT 

outputs for positive frequencies by the frequency response associated with a 40-channel gammatone-shaped 

filter bank whose center frequencies are linearly spaced in Equivalent Rectangular Bandwidth (ERB)[5] 

between 200 Hz and 8000 Hz, using the implementation of gammatone filters. 

1.2 Temporal Integration for Environmental Analysis 

Most speech recognition and speech committal to writing systems use analysis frames 

of length between twentymsand thirty ms. it's oftentimes ascertained that longer analysis 

windows give higher performance for noise modelling and environmental normalization  [6] as a result of the 

facility related to most background conditions changes additionalslowly than the instant power related 

to speech. additionally, Hermanskyetal have ascertained that the characterization and exploitation information  

concerning the longer-term envelopes of every gamma tone channel will givecomplementary 

information that's helpful for rising speech recognition accuracy, In PNCC processing there is an estimate a 

quantity that is referred to as“medium-time power” Q[m, l] by computing the running average of P[m, l], the 

power observed in a single analysis frame, according to the equation: 

Where m represents the frame index and l is the channel index. 

1.3 Asymmetric Noise Suppression 

This gives a new approach to noise compensation which  is referred to as asymmetric noise suppression (ANS). 

The concept is that the speech power in each channel usually changes more rapidly than the background noise 

power in the same channel. or it is said that speech usually has a higher-frequency modulation spectrum than 

noise.Nowadays many algorithms, RASTA-PLP processing, have been developed using either high-pass 

filtering or band-pass filtering in the modulation spectrum domain either explicitly or implicitly. The 

simplestway to accomplish this objective is to perform high-pass filtering in each channel which has the effect 

of removing slowly-varying components which typically represent the effects of additive noise sources rather 

than the speech signal. One common problem with the application concept of conventional linear high-pass 

filtering in the power domain is that the filter output can become negative. Negative values for the power 

coefficients can cause problems in the application of the compressive nonlinearity and in speech resynthesis 

unless a suitable floor value is applied to the power coefficients [7]. Rather than filtering in the power domain, 
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performing  filtering after applying the logarithmic nonlinearity, as is done with conventional cepstral mean 

normalization in MFCC processing. Spectral subtraction is another way to reduce the effects of noise, whose 

power changes slowly. In spectral subtraction techniques, the noise level is typically estimated from the power 

of non-speech segments (e.g. [7]) 

1.4 Temporal Masking  

Many algorithms showed that the human auditory system appears to focus more on the onset of an incoming 

power envelope rather than the falling edge of that same power envelope. This  has led to several onsets 

enhancement algorithms and shown in fig.2.  There is one way to overcome this effect in PNCC processing, that 

is done  by obtaining a moving peak for each frequency channel l and suppressing the instantaneous power if it 

falls below this envelope. The processing invoked for temporal masking is given in block diagram. Peak power 

Qp[m, l] for each channel using the following equation: 

 

Where  λt is the forgetting factor for obtaining the online peak. Where m is the frame index and l is the channel 

index. 

1.5 Rate Level Nonlinearity 

There is a critical importance of the nonlinearfunction that describes the relationship between incoming signal 

amplitude in a given frequency channel and the corresponding response of the processing model. This “rate-

level nonlinearity” is explicitly or implicitly a  crucial part of every model of auditory processing. 
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IV. SUBJECTIVE MEASURES 

4.1 Signal to noise ratio (SNR) 

Signal-to-noise ratio is a term used in field of engineering that compares the level of a desired signal to the level 

of background noise. It is defined as the ratio of signal power to the noise power, and expressed in decibels. A 

ratio higher than 1:1 indicates more signal than noise. While SNR is commonly used for speech  signals. It is 

represented by following equation. 

 

4.2 Peak signal to noise ratio (PSNR)  

Peak signal-to-noise ratio, is an engineering term for the ratio between the maximum possible power of 

a signal and the power of corrupting noise that affects the fidelity of its representation. Because many signals 

have a very wide dynamic range, PSNR is usually expressed in terms of the logarithmic decibel scale. 

PSNR= 20. log10(MAXI) – 10.log10(MSE) 

4.3 Mean Square Error (MSE) 

The MSE is a measure of the quality of an estimator—it is always non-negative, and values closer to zero are 

better. In statistics, the mean squared error (MSE) or mean squared deviation (MSD) of an estimator (of a 

procedure for estimating an unobserved quantity) measures the average of the squares of the errors or deviations 

that is, the difference between the estimator and what is estimated. MSE is a risk function, corresponding to 

the expected value of the squared error loss or quadratic loss. 

 

4.4  Root-mean-square error (RMSE)  

It is a frequently used measure of the differences between values (sample and population values) predicted by a 

model or an estimator and the values actually observed. The RMSD represents the sample standard deviation of 

the differences between predicted values and observed values. These individual differences are 

called residuals when the calculations are performed over the data sample that was used for estimation, and are 

called prediction errors when computed out-of-sample. The RMSD serves to aggregate the magnitudes of the 

errors in predictions for various times into a single measure of predictive power. RMSD is a measure 

of accuracy, to compare forecasting errors of different models for a particular data and not between datasets, as 

it is scale-dependent. 
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V  RESULTS AND DISCUSSIONS 

\   

Fig 3: PNCC Output waveforms 

    

Fig(a) Graphical representation of PSNR           Fig(b) Graphical representation of MSE 

 

   

Fig(c) Graphical representation ofRMSE         Fig(d) Recognition accuracy of PNCC 

 

VI. CONCLUSION 

This paper presents an extraction algorithm called PNCC (Power Normalized cepstral coefficients). Currently, 

many new schemes are proposed in the field of speech recognition. So the best method among all should be 

found out. The proposed method is among the efficient method of all to noise removal which leads to extract 

features for speech recognition. Many techniques are proposed for automatic speech recognition but none of it is 

considered to be perfect for measurement of accuracy. Improving accuracy plays a crucial role in the field of 
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speech processing. In this paper features are extracted using PNCC with real time as well as from standard 

database and accuracy has been checked using PNCC (Power Normalized cepstral coefficients) algorithm.  

From the estimated results it is found that PNCC algorithm reduces the computational complexity with 

improved accuracy. Logically, a bigger value of SNR is good because it means that the ratio of signal to noise is 

higher. Higher SNR indicate that higher removal of noise. The related results are checked based on  subjective 

measure. In subjective measure SNR, Peak Signal-to-Noise Ratio (PSNR), Segmental-SNR and Mean Square 

Error (MSE), Root mean square error(RMSE )are assumed. 
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