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ABSTRACT  

In detrimental conditions, the cochlear implants used by the hearing impaired listeners suffer from a 

decrease in speech intelligibility (SI). In an attempt to improve the SI, the Time-Frequency masks are used 

to perform noise suppression. Ideal Binary Mask (IBM) with its binary weights and Ideal Wiener Filter 

(IWF) with its continuous weights masks are used to enhance the speech signal. It is not known which of 

the masks has the highest potential for CI users in terms of SI and speech quality. The comparisons of both 

these filters are performed, in this study. The investigations were conducted among normal-hearing (NH) 

subjects listening to the noise vocoder CI simulations and also in CI users on the bases of speech quality. 

The ideal masks estimates the potential of SI assessed in a sentence recognition task, with an interfering 

talker and in multitalker babble. The estimation of the simulated errors provides the robustness of the 

approaches. The   speech quality is assessed in CI users to a preference rate. The IWF technique 

outperformed the IBM technique only in NH users, while no significance was obtained in CI users. The 

speech intelligibility is degraded due to estimated error in Cochlear implants. The IWF has high potential 

for speech quality than the IBM processed signals. In this study the outcome suggest that mask pattern is 

not critical for CI users. The outcome suggests the new approach should consider the class of listeners 

considered. 

Keywords: Speech Enhancement; Ideal Binary Masking (IBM); Ideal Weiner Filter (IWF); Signal 

to Noise Ratio (SNR); Perceptual Evaluation of Speech Quality (PESQ). 

I. INTRODUCTION 

Using the auditory prostheses like hearing aids or CIs, the understanding of speech in detrimental conditions is 

a very challenging task. In reverberant or noisy environment, SI decreases rapidly particularly in CI users. 

Therefore, the noise reduction strategies is the focused development research area, which from the  target 

speech mixed with the interfering noise removes as much noise possible. The limitation of such approach is that 

the target signal should be avoided from distortions.  
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Generally, the operation of noise reduction algorithms is based upon a time–frequency depiction of the input 

(noisy) signal, by applying gain at each time–frequency point to suppress the noise. The gain function pattern 

over the corresponding time–frequency points is called mask. Mostly, the time–frequency based domain 

approaches derive their gains as the function of signal-to-noise ratio (SNR) in the respective time–frequency 

point. The perfect gain function obtained in NH listeners, which improves SI and speech quality is the ongoing 

discussion [1]–[4]. 

 
The most suited approach is the so-called binary mask (BM). The mask is derived by the auditory masking 

phenomenon and conserves with its binary values time–frequency points in which the target is dominant (i.e.  

SNR is above certain threshold). The BM exploits from the target and interferer spectra, the sparsity and 

disjointness. In derivation of the mask, if a priori knowledge of the signal and noise spectra is used then the 

mask is IBM. The approaches based on BMs by certain listening conditions with and without a priori knowledge 

for the mask  consideration also increase SI in NH [1], [5], [6] and hearing impaired listeners [4], [5], [6]. 

The state-of-the-art noise reduction algorithms obtain a mask with continuous gains range within 0 and 1 in 

proportion to the SNR, contrast to the hard-decision approach of the BM. Such algorithms exhibit improved 

speech quality compared to BM processed output [7]. In this class of algorithms most popular representative is 

the Wiener filter (WF) which is propitious in terms quality improvement [7]. If the prior knowledge was used in 

computation of the gain function, then referred to as WF. 

 
The perfect intelligibility can restored in IWF, with a Bark-scale frequency resolution even at very low SNRs 

conditions in both multitalker babble noise and interfering talker scenarios. This was in distinct contrast to the 

performance of the IBM, which provided intelligibility scores at the low SNRs of around 60%.The higher 

speech recognition scores more than 60% were derived for low-input SNRs, in [8], [9]. The results in both 

studies were based on the mask resolution and word correct scores was higher [8] or by modulating the mask 

pattern which discard the interfering background noise, with a stationary noise masker [9]. It also implemented, 

WF was more robust to estimation errors than the BM strategy. The several studies insisted that soft-decision 

approaches in terms of quality outperform BM [2], [10], [11]. Therefore, it was hypothesized that in auditory 

prostheses IWF approach should be preferred over the IBM.  

 
For CI users in monaural and bilateral applications the multichannel speech enhancement algorithms [11]-[14], 

[20] have been proved to be more beneficial still the further investigation are considered in single-channel noise 

reduction algorithms is still relevant. Therefore in CIs application the single-channel noise reduction algorithms 

have been implemented, provided a lead to increase in the SI [21], [22]. 

 
In this study with regard to its application in CIs, the potential of SI and speech quality is investigated in the 

IBM and the IWF approaches. The performances are carried out on two classes of user: for NH listeners 

subjected to noise vocoder simulations of participants as a model of CI processing of the processed signals and 

to a group of CI user.  
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II. METHODOLOGY USED 

In this work, Ideal Binary Mask (IBM) algorithm and Ideal Weiner Filter (IWF) algorithm implemented in the 

Time-Frequency mask are applied to the CI’s. It performs the suppression of noise. Cochlear implant are to be 

implanted in the inner ear, is a prosthetic device, and can restore partial hearing to profoundly deaf people or 

hearing impaired (HI) listeners. Signal processing, in particular, play an important role in the development of 

different techniques for the electrical stimuli estimated from the speech signal. The signal model and processing 

in CIs of Cochlear, Ltd., extracts up to N = 22 envelopes, in the frequency range up to 8 kHz. Such CIs usually 

operate with a frequency resolution that is close to the Bark scale spectrum [2]. 

 

Fig. 1 Signal Processing in CI’s. 

A. Signal Model 

A signal model is the consideration of a target speech signal embedded with the additive noise. Thus, in the 

discrete time domain, we obtain: x(n) = s(n) + v(n) ,  where x(n) is the observed microphone signal, v(n) is the 

additive noise, s(n) is the speech signal, and n is the sample index in time. For noise suppression, signals are 

usually   windowed in STFT representation as below: 

      X(k,l) = S(k,l) + V(k,l),    (1) 

With k being the discrete frequency index and l represent the index of the time-frame. The state-of-the-art of the 

noise suppression algorithms compute a time-frequency mask M(k,l), derived based on the power spectral 

density (PSD) estimation of the noise ΨVV(k,l) and the speech ΨSS(k,l), this mask is performed to obtain the 

spectrum of the (noisy) input signal. The noise-suppressed signal is then reconstructed from this masked 

spectrum, using standard overlap-add or overlap-save reconstruction. Note that only the amplitude of the 

spectrum is subjected to the masking, and further is used in the conjunction with the original (noisy) phase of 

X(k,l) for reconstructing the noise-suppressed signal. An ideal masking can be obtained considering that the true 

values of ΨVV and ΨSS are known for each time-frequency point (k,l). Two well known variants of ideal masks 

have been extensively studied in the field of speech recognition such as the ideal binary mask (IBM) Algorithm 

and the ideal Wiener Filter (IWF) Algorithm. 
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B. Ideal Binary Masking 

The gain of IBM (GIBM) consists of binary weights. IBM is categorized at three different levels: the T-F unit 

level, the time frame level, and the global level. GIBM is equal to1when the SNR is above a threshold value and 

0 when the SNR is lower than this threshold given by, 

             (2) 

The gain is applied to the T-F representation of the mixture of target and interferer signals before recombination 

in a synthesis filter bank. The computation of binary mask, include  separate target and interferer signals 

representation in T-F by using a short-time Fourier transform or a gamma tone filter bank. For each T-F unit, the 

power levels of the target and interferer levels are computed to determine the local signal-to noise ratio (SNR). 

T-F units with a local SNR above a pre-defined threshold are assigned a value of one in the mask and zero 

otherwise. 

                                             

Fig. 2 Block diagram of IBM algorithm. 

For the IBM, we computed the filter response magnitudes for the clean and noise signals, and then summed the 

energy in each band within 20 ms time frames (Hamming window with 50% overlap). For each band we 

assigned the mask a value of one at all 160 time samples within the time frame, if the target energy was greater 

than or equal to the interferer energy scaled by a threshold factor; note that we also assigned T-F units value of 

one if the criterion was met in either of the overlapping frames. We used a threshold of -Inf dB to simulate the 

unprocessed condition. 

The IBM estimate produce good results in speech separation. Signal-to-noise ratio (SNR) has been widely used 

as a performance measure in sound separation. For sound separation, it is defined as SNR which requires 

estimation of target signal and the estimated target signal. It has been noted that the IBM is locally optimal in 

the SNR sense, as flipping in T-F unit level in the IBM always lowers the SNR in that unit. It has also been 

assumed that the IBM is globally optimal technique, as the output produces the highest SNR gain among all 

binary masks. There exist two arguments for the global optimality of the IBM implementation. It is based on the 

local optimality of the IBM. At each T-F unit assignment, the IBM maximally either retains target energy or 

removes interference energy. Therefore it minimizes the missing target energy that is discarded due to 

interference energy that is retained. 
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C. Ideal Wiener Filter 

The Wiener filter algorithm is an ideal-masking technique used to estimate the desired or target random process 

signal by linear time-invariant (LTI) filtering, assuming known stationary signal and noise spectra, and also the 

additive noise. The Wiener filter generally minimizes the mean square error estimation between the random 

process and the desired process in speech. The Wiener filter objective is to mathematically calculate the 

statistical process of an unknown signal by considering the related signal as an input and then filtering that 

known signal, hence to produce the estimate as an output. For example, the known signal might consist of an 

unknown signal corrupted by additive noise signal. The Wiener filter processing involves removal of the noise 

from the corrupted signal, so as to provide an estimate of the underlying signal of interest. Theoretically, the 

IWF is a statistical approach based on minimum mean square error (MMSE) estimator article.     

                                                                    

Fig. 3 Block diagram of IWF algorithm. 

The Fig 3 depicts the implementation of the IWF technique process, where x is the input (noisy) signal, fk is the 

impulse filter representation, Wk is the Wiener filter co-efficient, yk is the estimated output while dk provides the 

minimum MSE estimation of the process.  It is a typical deterministic filter, designed for obtaining the desired 

frequency response. The design of the Wiener filter takes an account of different approach. One is the 

assumption of to have the knowledge of spectral properties in the original signal and the noise and one seeks the 

linear time-invariant filter whose comes close to the original signal as possible. The characterizations of Ideal 

Wiener filter (IWF) are: 

1. Assumption: For the corresponding signal, (additive) noise are considered stationary linear stochastic 

processes, it provides the known autocorrelation and cross-correlation and also the known spectral 

characteristics. 

2. Requirement:  The IWF must be physically realizable/causal. 

3. Performance criterion: Estimation of Minimum Mean-Square Error (MMSE) given, 

  (3) 

Where x(n) is the input speech signal being processed , s(n) is the original speech signal and w(n) is the 

weighted function of the IWF implementation technique. 

The IWF gain function is defined as: 

https://en.wikipedia.org/wiki/Linear_filter
https://en.wikipedia.org/wiki/Stationary_process
https://en.wikipedia.org/wiki/Estimation_theory
https://en.wikipedia.org/wiki/Noise
https://en.wikipedia.org/wiki/Minimum_mean_square_error
https://en.wikipedia.org/wiki/Frequency_response
https://en.wikipedia.org/wiki/LTI_system_theory
https://en.wikipedia.org/wiki/Stochastic_process
https://en.wikipedia.org/wiki/Stochastic_process
https://en.wikipedia.org/wiki/Stochastic_process
https://en.wikipedia.org/wiki/Autocorrelation
https://en.wikipedia.org/wiki/Cross-correlation
https://en.wikipedia.org/wiki/Causal_system
https://en.wikipedia.org/wiki/Minimum_mean-square_error
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   (4) 

Unlike the IBM function, the IWF generates a soft mask MIWF (k,l) ∈ [0,1]. The IWF has been demonstrated in 

CI’s, to yield perfectly, the speech intelligibility (SI) improvement for different SNRs and also for different 

noise types, in the subjective recognition experiments. The power spectral densities ΨSS(k,l)  and ΨVV(k,l)  are 

estimated by recursive smoothing of the periodogram, in this studies of the IBM and the IWF quantities. 

III. RESULT AND ANALYSIS 

A. Objective Speech Intelligibility and Quality Prediction 

The significant standardization efforts have been made by the International Telecommunications Union (ITU) 

for standardizing both intrusive and nonintrusive algorithms using NH listeners and CIs users. On the other 

hand, only a handful of algorithms that are proposed are specifically tuned to assistive listening devices. In the 

following sections, the choice of measures used was guided only by the applicability to the task in HA, but also 

by the availability of publicly available source code licensed at a reasonable cost. 

The performance evaluation of this database contains IEEE sentences produced by male and 3 female speakers 

and was corrupted by 8 different real time noises at various levels of SNR at the input level to the Hearing Aid. 

Noise signals from the AURORA database is taken as input, also including the recordings from different 

environments such as: babble (multitalker), car, restaurant, exhibition hall, street and airport, station. The noisy 

signals were interpreted with the speech signals at SNRs of 0, 5, 10, and 15dB. The clean signal which is 

subjective to different noisy signals are given as input to the Cochlear Implants, which is then proccessed with 

the noise suppression Algorithm. This process is evaluated using Signal to Noise Ratio (SNR) and Perceptual 

Evaluation of Speech Quality (PESQ) metrics. 

 

Fig. 4  Spectrogram and Waveform of corresponding clean Speech and addictive noisy speech to 

CI producing enhanced speech signal of 0dB street noise utilizing IBM Algorithm. 

Figure 4 shows Waveforms and Spectrograms for IBM approach of Street noise of 0dB. Figure 1(a) shows the 

Waveform of Input Clean Speech Signal, Noisy Speech Signal and the Enhanced Speech Signal 
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correspondingly. The Waveform of Noisy Speech Signal depicts the harmonic part of the signal is visible along 

with the additive residual noise, which degrades the speech signal in CI. The Waveform of the Enhanced Speech 

Signal correspondingly shows the enhanced speech signal, which is the output of both the IBM approach. The 

enhanced waveform shows the reduction in noisy part of the signal. 

Figure 1(b) shows the Spectrogram of the Input Clean Speech Signal, Noisy Speech Signal and the Enhanced 

Speech Signal correspondingly. The Spectrogram of Noisy Speech Signal clearly displays that the harmonic part 

of the signal visible is corrupted by noise. The spectrogram of noisy signal corrupted with street noise of 0dB 

SNR. The speech signal is distinct into several frames. For this 0 dB input SNR, when the corrupted signal is 

run through the IBM algorithm, the output SNR is 5.0639dB. The Spectrogram of the the Enhanced Speech 

Signal, it depicts that the harmonic part is visible clearly. The visible harmonic parts displays that the noisy parts 

in the speech signal are reduced drastically. 

 

Fig. 5 Spectrogram and Waveform of corresponding clean Speech and addictive noisy speech to 

CI producing enhanced speech signal of 0dB street noise utilizing IWF Algorithm. 

Similarly Figure 5 shows Waveforms and Spectrograms for IWF approach of Street noise of 0dB. Figure 1(a) 

shows the Waveform of Input Clean Speech Signal, Noisy Speech Signal and the Enhanced Speech Signal 

correspondingly. Compared to the Enhanced Speech Signal in Figure 1 and Figure 2, IWF shows better 

improvisation in SNR. Compared the corresponding Enhanced Speech Signal Figure 1, the harmonic parts of the 

speech are clearly visible in Figure 2. 

 

Fig. 6  Spectrogram and Waveform performance criteria of MMSE estimation in IWF 

algorithm. 



 

538 | P a g e  

 

Fig 6 shows the waveform of Minimum Mean Square Error (MMSE), which is the estimated error of the 

processed signal from the desired signal analysis for street noise at odB level. This criterion is believed to be 

more perceptually meaningful, between the logarithms of the spectra of the original and estimated signals. 

B. Algorithmic Parameters 

The intrusive and nonintrusive algorithm metric are being used in NH listeners and CIs users speech signal 

processing prediction. The non-intrusive intelligibility metric consists of two indices, i.e., SRMR (speech to 

reverberation modulation energy ratio) and ModA (modulation-spectrum area). 

The intrusive metric used in speech quality measure were Perceptual Evaluation of Speech Quality (PESQ), an 

optimized PESQ (oPESQ), algorithm are used for reverberation degradations, while the other metric are the 

Kullback-Leibler Divergence (KLD) and the Frequency-Weighted Segmental Speechto-Reverberation Ratio 

(FWSSRR). Among these metrics considered, the intrusive intelligibility predictors were PESQ and SNR 

estimator, and were fitted to NH subjects. 

B. SNR Estimation 

Signal to-Noise Ratio (SNR) is one of the oldest and widely used objective measures. It is simple to calculate 

signal mathematically, but requires both the undistorted (clean) speech and distorted (clean) speech sample-s. 

SNR can be calculated as follows  

                                                          (5) 

where, x(n) is the clean speech,  xˆ(n) the distorted speech, and N the number of samples. This classical 

definition of SNR is not well related to the speech quality for a wide range of distortions. Thus, several 

variations to the classical SNR exist which show higher correlation related with subjective quality. It was 

observed that classical SNR are not well correlated with speech quality although speech is not a stationary 

signal, SNR averages the ratio over the entire signal. Speech energy fluctuates over time and so portions, where 

speech energy is large, and noise which is inaudible should not be removed out as by other portions when 

speech energy is small, the noise can be used heard along with speech. Hence, SNR was calculated by short 

frames analysis, and then preceded by average. This measure is called the segmental SNR, and can be defined as 

     (6) 

 The fwSNRseg can be defined as follows, 

      (7) 

where W(j,m) is the weight on the j
th

 sub band in the m
th

 frame, K is the number of sub bands, X(j,m) is the 

spectrum magnitude of the j
th

 sub band in the m
th

 frame, and ˆX(j,m) its distorted spectrum magnitude. 
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TABLE I       RESULTS OF IBM OUTPUT SNR WITH DIFFERENT INPUT SNR 

               

Hence developed system provided the satisfactory performance for different noises of 0dB, 5 dB, 10 dB, and 

15dB of SNR levels. Table I shows the SNR in dB for different noises in sentence recognition task. 

C. PESQ  Estimation 

The International Telecommunications Union (ITU-T P.862) standard, also known as Perceptual Evaluation of 

Speech Quality (PESQ), is a widely used objective quality measurement standard algorithm. The original PESQ 

algorithm was developed for 8-kHz sampling rate of narrow-band speech, while for 16 kHz sampling rate of 

wideband are used in this experiment. While the important emphasize was that the P.862 standard was recently 

superseded by ITU-T Recommendation P.863 also known as Perceptual Objective Listening Quality 

Assessment (POLQA), thus covering a wider scope of speech bandwidths and distortions (i.e., superwideband).  

POLQA, however, is not used in this study, its source code is not available at ease and its license is very costly. 

Perceptual Evaluation of Speech Quality (PESQ) wideband extension (50-7000 Hz, 16 kHz sample rate 

configuration  was applied to quantify how the perceptual quality of the distorted speech waveform varied with 

hearing loss severity and speech material. PESQ scores were expressed using the mean opinion score listening 

quality objective (MOS LQO) scale and range from 1 (worst quality) to 5 (best quality). 

 

TABLE II RESULTS OF PESQ IN IBM WITH DIFFERENT INPUT SNR 

 

Hence developed system provided satisfactory performance of PESQ for different noise levels. Table II shows 

the PESQ corresponding to different noise levels. 

 

IV. CONCLUSION 

 

The improvement of SI potential was assessed by a sentence recognition task applicable to the CI users, with the 

ideal masks estimates in the multitalker street and also with an interfering talker. This study investigated the 

potential of the IWF and the IBM approaches for speech quality (SQ) and speech intelligibility (SI) improvising 

in CIs. The experimental result shows that IWF techniques outperforms the IBM technique in the case of  NH 

listeners but this method is not so good for CI users.  
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It is clear that without a priori knowledge of the target and noise components, it is highly critical to rescale the 

original speech signal level. In conclusion, this study suggests that the future work of speech enhancement 

algorithms in Cochlear Implants (CI’s) generally should be optimized for the respective target group of listeners. 

The evaluation parameter such as SNR and PESQ showed better results even at very low noise levels compared 

to the existing system in CI. In future this technique can be implemented in hearing aid for better performance. 
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