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ABSTRACT 

In this paper, we consider an image decomposition model that provides a novel framework for image denoising. The 

model computes the components of the image to be processed in a moving frame that encodes its local geometry 

(directions of gradients and level lines). Then, the strategy we develop is to denoise the components of the image in 

the moving frame in order to preserve its local geometry, which would have been more affected if processing the 

image directly. Experiments on a whole image database tested with several denoising methods show that this 

framework can provide better results than denoising the image directly, both in terms of Peak signal-to-noise ratio 

and Structural similarity index metrics.In the proposed strategy for denoising, we either combine the components 

into a single vector-valued function to which we apply a denoising method (VTV) or treat them separately applying 

the same denoising method but with different parameters (NLM and BM3D).  
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I REVIEW OF DIFFERENT METHODS 

 

Total variation methods[5] 

This study proposes a new definition of the total variation norm for vector-valued functions that can be applied to 

restore color and other vector-valued images. The new TV norm has the desirable properties of 1) not penalizing 

discontinuities (edges) in the image, 2) being rotationally invariant in the image space, and 3) reducing to the usual 

TV norm in the scalar case. Some numerical experiments on denoising simple color images in red–green–blue 

(RGB) color space are presented. We have introduced a new definition of the total variationnorm for vector-valued 

functions. This definitionhas a number of properties that may be desirable in applications:1) it allows discontinuous 

functions—edges; 2) it isrotationally invariant in image space; and 3) it reduces to the classical TV norm in the 

scalar case. We have compared the properties of the norm to other definitions, in particular to the approach of Sapiro 

[9]. By studying simple examples, i.e., reduction to one dimension in either physical, or color space, we have 
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illustrated some differences between the norms. A general framework for vector norms was introduced. We find two 

natural candidates: the TV , and the norms. Of these two, TV does a better job of preserving color transitions. Many 

promising possible norm definitions fall outside this framework, and are not discussed in this study. 

 

II IMAGE QUALITY ASSESSMENT[10] 

This study gives methods for assessing perceptual image quality traditionally attempted to quantify the visibility of 

errors (differences) between a distorted image and a reference image using a variety of known properties of the 

human visual system. Under the assumption that human visual perception is highly adapted for extracting structural 

information from a scene, we introduce an alternative complementary framework for qualityassessment based on the 

degradation of structural information. As a specific example of this concept, we develop a Structural Similarity 

Index and demonstrate its promise through a set of intuitive examples, as well as comparison to both subjective 

ratings and state-of-the-art objective methods on a database of images compressed with JPEG and JPEG2000.1 An 

image signal whose quality is being evaluated can bethought of as a sum of an undistorted reference signal and 

anerror signal. A widely adopted assumption is that the loss ofperceptual quality is directly related to the visibility of 

the errorsignal. The simplest implementation of this concept is the MSE,which objectively quantifies the strength of 

the error signal. Buttwo distorted images with the same MSE may have very differenttypes of errors, some of which 

are much more visible thanothers. Most perceptual image quality assessment approachesproposed in the literature 

attempt to weight different aspects ofthe error signal according to their visibility, as determined bypsychophysical 

measurements in humans or physiological measurementsin animals. 

 

III HIGHER-ORDER IMAGE STATISTICS[2] 

In this study, the restoration of images is an important and widely studied problem in computer vision and image 

processing. Various image filtering strategies have been effective, but invariably make strong assumptions about the 

properties of the signal and/or degradation. Therefore, these methods typically lack the generality to be easily 

applied to new applications or diverse image collections.This paper describes a novel unsupervised, information-

theoretic, adaptive filter (UINTA) that improves the predictability of pixel intensities from their neighborhoods by 

decreasing the joint entropy between them. Thus UINTA automatically discovers the statistical properties of the 

signal and can thereby restore a wide spectrum of images and applications. This paper describes the formulation 

required to minimize the joint entropy measure, presents several important practical considerations in estimating 

image-region statistics, and then presents results on both real and synthetic data. 

 

IV SPINOR FOURIER TRANSFORM[3] 

It introduces a new spinor Fourier transform for both gray-level and color image processing. Our approach relies on 

the three following considerations: mathematically speaking, defining a Fourier transform requires to deal with 
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group actions; vectors of the acquisition space can be considered as generalized numbers when embedded in 

aClifford algebra; the tangent space of the image surface appears to be a natural parameter of the transform we 

define by means of so-called spin characters. The resulting spinor Fourier transform may be used to perform 

frequency filtering that takes into account the Riemannian geometry of the image.We give examples of low-pass 

filtering interpretedas diffusion process. When applied to color images, the entire color information is involved in a 

really non marginal process. The construction involves group actions via spin characters, these ones being 

parametrized by bivectors of the Clifford algebra. A natural choice for the bivectors is the one corresponding to the 

tangent planes of the image surface. But other bivectors can be considered.This paper introduces a new approach to 

orthonormal wavelet image denoising. Instead of postulating a statistical model for the wavelet coefficients, we 

directly parametrize the denoising process as a sum of elementary nonlinear processes with unknown weights.We 

then minimize an estimate of the mean square error between the clean image and the denoised one. The key point is 

that we have at our disposal a very accurate, statistically unbiased, MSE estimate—Stein’s unbiased risk estimate 

that depends on the noisy image alone, not on the clean one. Like the MSE, this estimate is quadratic in the 

unknown weights, and its minimization amounts to solving a linear system of equations. The existence of this a 

priori estimate makes it unnecessary to devise a specific statistical model for the wavelet coefficients. Instead, and 

contrary to the custom in the literature, these coefficients are not considered random anymore. We describe an 

interscale orthonormal wavelet thresholding algorithm based on this new approach and show its near-optimal 

performance—both regarding quality and CPU requirement—by comparing it with the results of three state-of-the-

art nonredundant denoising algorithms on a large set of test images. An interesting fallout of this study is the 

development of a new, group-delay-based,parent–child prediction in a wavelet dyadic tree. 

 

V A NON-LOCAL ALGORITHM[7] 

In this study they propose a new measure, the method noise, to evaluate and compare the performance of digital 

image denoising methods. We first compute and analyze this method noise for a wide class of denoising algorithms, 

namely the local smoothing filters. Second, we propose a new algorithm, the non-local means (NL-means), based on 

a non-local averaging of all pixels in the image.  present some experiments comparing the NL-means algorithm and 

the local smoothing filters. Several methods have been proposed to remove the noise and recover the true image u. 

Even though they may be very different in tools it must be emphasized that a wide class share the same basic remark 

: denoising is achieved by averaging. This averaging may be performed locally: the Gaussian smoothing model  the 

anisotropic filtering and the neighborhood filtering by the calculus of variations: the Total Variation minimization or 

in the frequency domain: the empirical Wiener filters and wavelet thresholding methods. 

 

A New SURE Approach to Image Denoising[4] 
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This paper introduces a new approach to orthonormal wavelet image denoising. Instead of postulating a statistical 

model for the wavelet coefficients, we directly parametrize the denoising process as a sum of elementary nonlinear 

processes with unknown weights.We then minimize an estimate of the mean square error between the clean image 

and the denoised one. The key point is that we have at our disposal a very accurate, statistically unbiased, MSE 

estimate—Stein’s unbiased risk estimate that depends on the noisy image alone, not on the clean one. Like the MSE, 

this estimate is quadratic in the unknown weights, and its minimization amounts to solving a linear system of 

equations. The existence of this a priori estimate makes it unnecessary to devise a specific statistical model for the 

wavelet coefficients. Instead, and contrary to the custom in the literature, these coefficients are not considered 

random anymore. We describe an interscale orthonormal wavelet thresholding algorithm based on this new approach 

and show its near-optimal performance—both regarding quality and CPU requirement—by comparing it with the 

results of three state-of-the-art nonredundant denoising algorithms on a large set of test images. An interesting 

fallout of this study is the development of a new, group-delay-based,parent–child prediction in a wavelet dyadic tree. 

 

Image Denoising Via Sparse and Redundant Representations[6] 

This study gives the image denoising problem, where zero-mean white and homogeneous Gaussian additive noise is 

to be removed from a given image. The approach taken is based on sparse and redundant representations over 

trained dictionaries. Using the K-SVD algorithm, we obtain a dictionary that describes the image content effectively. 

Two training options are considered: using the corrupted image itself, or training on a corpus of high-quality image 

database. Since the K-SVD is limited in handling small image patches, we extend its deployment to arbitrary image 

sizes by defining a global image prior that forces sparsity over patches in every location in the image.We show how 

such Bayesian treatment leads to a simple and effective denoising algorithm. This leads to a state-of-the-art 

denoising performance, equivalent and sometimes surpassing recently published leadingalternative denoising 

methods. This work has presented a simple method for image denoising, leading to state-of-the-art performance, 

equivalent to and sometimes surpassing recently published leading alternatives. The proposed method is based on 

local operations and involves sparse decompositions of each image block under one fixed over-complete dictionary, 

and a simple average calculations. The content of the dictionary is of prime importance for the denoising process—

we have shown that a dictionary trained for natural real images, as well as an adaptive dictionary trained on patches 

of the noisy image itself, both perform very well. 

 

Image denoising by sparse 3D transform-domain collaborative filtering[9] 

This study proposes a novel image denoising strategy based on an enhanced sparse representation in transform 

domain. The enhancement of the sparsity is achieved by grouping similar 2-D image fragments into 3-D data arrays 

which we call ―groups.‖ Collaborative filtering is a special procedure developed to deal with these 3-D groups. We 

realize it using the three successive steps: 3-D transformation of a group, shrinkage of the transform spectrum, and 
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inverse 3-D transformation. The result is a 3-D estimate that consists of the jointly filtered grouped image blocks. 

By attenuating the noise, the collaborative filtering reveals even the finest details shared by grouped blocks and, at 

the same time, it preserves the essential unique features of each individual block. The filtered blocks are then 

returned to their original positions. Because these blocks are overlapping, for each pixel, we obtain many different 

estimates which need to be combined. Aggregation is a particular averaging procedure which is exploited to take 

advantage of this redundancy. A significant improvement is obtained by a specially developed collaborative Wiener 

filtering. An algorithm based on this novel denoising strategy and their efficient implementations are presented in 

full detail; an extension to color-image denoising is also developed. The experimental results demonstrate that this 

computationally scalable algorithm achieves state-of-the-art denoising performance in terms of both peak signal-to-

noise ratio and subjective visual quality. 

 

Noise removal using smoothed normals and surface fitting 

In this work, we use partial differential equation techniques to remove noise from digital images. The removal is 

done in two steps. We first use a total-variation filter to smooth the normal vectors of the level curves of a noise 

image. After this, we try to find a surface to fit the smoothed normal vectors. For each of these two stages, the 

problem is reduced to a nonlinear partial differential equation. Finite difference schemes are used to solve these 

equations. A broad range of numerical examples are given in the paper. In this paper, they tried to process three 

dimensional surfaces. The essential idea was to manipulate the normal vectors for a given three dimensional surface 

and then find a new surface that matches the processed normal vectors in a suitable way. In this work, we are 

extending the idea of to do image noise removal. Further, we would like to mention that normal processing has also 

been used in shape from shading reconstruction and in mesh optimization 

 

VI THE CURVELET TRANSFORM FOR IMAGE DENOISING,[11] 

This study describe approximate digital implementations of two new mathematical transforms, namely, the ridgelet 

transformand the curvelet transform. Our implementationsoffer exact reconstruction, stability against perturbations, 

ease of implementation, and low computational complexity. A central tool is Fourier-domain computation of an 

approximate digital Radon transform. We introduce a very simple interpolation in Fourier space which takes 

Cartesian samples and yields samples on a rectopolar grid, which is a pseudo-polar sampling set based on a 

concentric squares geometry. Despite the crudeness of ourinterpolation, the visual performance is surprisingly good. 

Our ridgelet transform applies to the Radon transform a special overcomplete wavelet pyramid whose wavelets have 

compactsupport in the frequency domain. Our curvelet transform uses our ridgelet transform as a component step, 

and implements curvelet subbands using a filter bank of à trous wavelet filters. Our philosophy throughout is that 

transforms should be over complete, rather than critically sampled. We apply these digital transforms to the 

denoising of some standard images embedded in white noise. In the tests reported here, simple thresholding of the 
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curvelet coefficients is very competitive with ―state of the art‖ techniques based on wavelets, including thresholding 

of decimated or undecimated wavelet transforms and also including tree-based Bayesian posterior mean methods. 

Moreover, the curvelet reconstructions exhibit higher perceptual quality than wavelet-based reconstructions, offering 

visually sharper images and, in particular, higher quality recovery of edges and of faint linear and curvilinear 

features. Existing theory for curvelet and ridgelet transforms suggests that these new approaches can outperform 

wavelet methods in certain image reconstruction problems. The empirical results reported here are in encouraging 

agreement. 

 

VII A DECOMPOSITION FRAMEWORK FOR IMAGE DENOISING ALGORITHMS[1] 

In this study gives an imagedecomposition model that provides a novel framework for image denoising. The model 

computes the components of the image to be processedin a moving frame that encodes its local geometry (directions 

of gradients and level lines). Then, the strategy we develop is to denoise the components of the image in the moving 

frame in order to preserve its local geometry, which would have been more affected if processing the image directly. 

Experiments on a whole image database tested with several denoising methods show that this framework can 

provide better results than denoising the image directly, both in terms of Peak signal-to-noise ratio and Structural 

similarity index metrics. 

 

System Block Diagram of Image Denoising 
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FIG: BLOCK DIAGRAM OF IMAGE DENOISING METHOD 

The flow of proposed work is to compute the components of the image, then these components will be denoised 

which preserves the local geometry of images like edges, gray level gradient etc. Thus improving the Peak signal-to-

noise ratio and Structural similarity index metrics, we get better denoised image 

 

7.1 The Gray-Level Case 

Let I:⊂R2 → R be a gray-level image, and (x, y) be the standard coordinate system of R2. We denote by Ix resp. Iy 

the derivative of I with respect to x resp. y, and by ∇I the gradient of I. Our image decomposition model for I is a 

two-stages approach: 

First, we construct an orthonormal moving frame (Z1, Z2, N) of (R3,__2) over _ that encodes the local geometry of 

I . Then, we compute the components (J 1, J 2, J 3) of the R3-valued function (0, 0, I ) in that moving frame. More 

precisely, we consider a scaled version μI of I , for μ ∈]0, 1], and its graph, which is the surface S in R3 

parameterized by  

ψ : (x, y) --→ (x, y,μ I (x, y))                           (1) 

 

The orthonormal moving frame (Z1, Z2, N) we consider is the following: the vector field Z1 is tangent to the surface 

S and indicates the direction of the steepest slope at each point of S; the vector field Z2 is tangent to S and indicates 

the direction of the lowest slope at each point of S. It follows that N is normal to the surface since we require (Z1, 

Z2, N) to be orthonormal. The moving frame (Z1, Z2, N) can be constructed as follows. Let z1 = (μIx,μIy )T be the 

gradient of μI and z2 = (−μIy,μIx )T indicating the direction of the level-lines of μI . On homogeneous regions of I , 

i.e. at pixel locations (x, y) where Ix (x, y) = Iy (x, y) = 0, we define z1 = (1, 0)T and z2 = (0, 1)T . Then, Z1 and Z2 

are given by the following expressions 

Zi = dψ(zi )/lldψ(zi )ll2     , i = 1,2                       (2) 

where dψ stands for the differential of ψ, which maps vector fields on _ to tangent vector fields of S. The expression 

of the unit normal N is then obtained as the vectorial product between Z1 and Z2.The explicit expressions of the 

vector fields Z1, Z2, N are given by the matrix field 
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where the coordinates of the vector field Z1 are given in the first column, the coordinates of Z2 in the second 

column, and the coordinates of N in the third column. 

 

   

Fig. 1 illustrates the moving frames (z1, z2) and (Z1, Z2, N) aforementioned for a simple image. The left image 

shows the moving frame (z1, z2) at two points p and q of the domain and the right image shows the induced moving 

frame (Z1, Z2, N) attached to the surface S at the points ψ(p) and ψ(q). 

 

Fig. 1 illustrates the moving frames (z1, z2) and(Z1, Z2, N) aforementioned for a simple image. The left image 

shows the moving frame (z1, z2) at two points p and q of the domain, and the right image shows the inducedmoving 

frame (Z1, Z2, N) attached to the surface S at thepoints ψ(p) and ψ(q). Denoting by (e1, e2, e3) the orthonormal 

frame of (R3,__2), where e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1), the matrix P in (3) is nothing but the frame 

change field from (e1, e2, e3) to (Z1, Z2, N), meaning that the components of the R3-valued function (0, 0, I ) in the 

new frame, denoted by (J 1, J 2, J 3), are given by 

 

 

7.2 The Multi-Channel Case 

We aim at extending the image decomposition model of Sect. II.A from gray-level to n-channel images I =(I 1, · · · , 

I n) : _ ⊂R2 −→ Rn, n >1, by following a similar approach: first, we construct an orthonormal moving frame (Z1, 

Z2, N1, · · · , Nn) of (Rn+2,__2) over _ that encodes the local geometry of I . Then, we compute the components (J 

1, J 2, · · · , J n+2) of the Rn+2-valued function (0, 0, I 1, · · · , I n ) in that moving frame. As in the gray-level case, 

the first step consists in considering a scaled version μI of I, for μ ∈]0, 1], and its graph, which is the surface S in 

Rn+2 parametrized by  

The moving frame (Z1, Z2, N1, · · · , Nn) we consider is then the following: the vector field Z1 is tangent to the 

surface S and indicates the direction of the steepest slope at each point of S; the vector field Z2 is tangent to S and 
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indicates the direction of the lowest slope at each point of S, and N1, · · · , Nn are normals to the surface. Note that, 

unlike the gray-level case, there is an infinite number of unit normals to the surface. 

The moving frame (Z1, Z2, N1, · · · , Nn) can be constructed as follows. As in the gray-level case, Z1 and Z2 can 

be recovered from the directions z1 and z2 of highest and lowest variations of the scaled image μI under the map (2), 

these latter being the eigenvectors of the structure tensor associated to μI , which is given by 

 

 

On homogeneous regions, i.e. at pixel locations (x, y) where 

. It is worth noting that, unlike gray-level images, 

multi-channel images do not have necessarily levellines, meaning that the smallest eigenvalues of the structure 

tensor are not necessarily 0. We then need to select a set of n vector fields N1, · · · , Nn normal to the surface and 

orthogonal to each other in order to complete the orthonormal moving frame. A natural approach for constructing 

them is to consider the canonical vectors  

e3 = (0, 0, 1, 0, · · · , 0), · · · , en+2 = (0, · · · , 0, 1) from which we apply the Gram-Schmidt orthonormalization 

process to the frame field (Z1, Z2, e3, · · · , en+2). 

Finally, denoting by P the matrix field encoding the moving frame (Z1, Z2, N1, · · · , Nn), i.e. the first column of P 

contains the coordinates of Z1, the second column the coordinates of Z2, and the i -th column the coordinates of 

Ni−2 for i ∈ {3, · · · , n + 2}, the components (J 1, · · · , J n+2) of the Rn+2-valued function (0, 0, I 1, · · · , I n) in 

the frame 

(Z1, Z2, N1, · · · , Nn) are given by 

 

Unlike the gray-level case, it is not possible to plot the moving frame in a trivial way since the surface S lives in a 

space of dimension greater than or equal to 4. 

 

7.3 Application to Image Denoising 

The framework we propose for denoising an image while systematically taking into account its local geometry is 

based on applying image denoising techniques to the componentsof the image in the moving frame constructed 
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above instead of applying the technique to the image itself. This methodology has already been used in [2]–[4] with 

local regularization/denoising methods, but it can actually be extended to any denoising technique. In this section, 

we give more details about our approach dealing with gray-level and color images. 

7.3.1 Gray-Level Images: In the experiments performed throughout this article, the strategy on gray-level images I : 

_ ⊂R2 −→ R is the following: 

1) Process I with some denoising technique F and call the output image Iden. 

2) Compute the components (J 1, J 2, J 3) of I in the moving frame (3), for some scalar μ, with formula (4). Apply 

the same denoising technique F to the components to obtain the processed components (J 1 den, J 2 den, J 3 den). 

Then, apply the inverse frame change matrix field to the processed components, i.e. 

 

and denote by IdenMF the third component I 3 denMF. 

1) Compare Iden and IdenMF with the metrics PSNR and SSIM. 

 

7.3.2 Color Images: The extension to color images is not straightforward because of the flexibility of the choice of 

color space and the way in which the moving frame approach 

can be applied (channel-wise, only to selected channels, or vectorially). We will see in the next two sections that the 

color space and manner in which the approach is applied both depend on the image denoising technique. However, 

in all of the experiments performed throughout this article, our approach for color images I : _ ⊂R2 −→ R3 is of the 

form: 

1) Process I with an image denoising technique F and call the output image Iden. 

2) Apply the same image denoising technique F to the components in some moving frame related to the channels of 

the image or the full image itself. Then apply the inverse frame change matrix field to the processed components, 

from which a color image IdenMV is reconstructed. 

3) Compare Iden and IdenMV with the metrics PSNR and SSIM. Note that SSIM has been originally designed for 

gray-level images, and we define the SSIM Index for color images as the mean of the SSIM Index of each color 

channel. Finally, we would like to point out that the strategy described above can actually be applied using any 

moving frame. 

 

VIII CONCLUSION 
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In this proposed work, we have to develop a framework that enables any denoising method to take more into 

account the local geometry of the image to be denoised by preserving the moving frame describing the graph of a 

scaled version of the image. Experiments with the VTV-based denoising method, NLM and BM3D algorithms on 

both gray-level and color images tested over the Kodak database showed that our strategy systematically improves 

the denoising method it is applied to, in terms of PSNR and SSIM metrics. The fact that we have been able to 

improve the performance of three denoising methods of different types: a local variational method, a patch-based 

method, and a method combining a patch based approach with a filtering in spectral domain approach, demonstrates 

the consistency of our methodology.However, as the components have different geometric meaning, one shall 

wonder whether they should not rather be denoised with different denoising methods, and we are currently 

investigating that point.  
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