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ABSTRACT 

Bloom filters (BFs) provide a simple and effective way to check whether an element belongs to a set. BFs are 

implemented using electronic circuits .The contents of a BF are commonly stored in a high speed memory and 

required processing is done in a processor or in dedicated circuitry. In some cases, the performance of those 

systems is critical, and fastest comparison filter implementations are needed. In order to improve comparison 

capability of bloom filter, parallel prefix comparator used to faster data insertion and deletion . The results 

show that the proposed scheme can effectively compare in the associated set with minimum switching activity of 

circuits . The proposed scheme can be of interest in practical designs to effectively mitigate delay of filter with a 

reduced overhead in terms of circuit area and power. 
 

Index Terms: Bloom Filter, Parallel Prefix Comparator, Switching Activity. 

 

I. INTRODUCTION  

 

Bloom filters are compact data structures for probabilistic representation of a set in order to support membership 

queries (i.e. queries that ask: “Is element X in set Y?”). This compact representation is the payoff for allowing a 

small rate of false positives in membership queries; that is, queries might incorrectly recognize an element as 

member of the set. In this Section we describe Bloom filters in detail. We briefly review Bloom filters. A Bloom 

filter represents a set S of m elements from a universe U using an array of n bits, denoted by B1, . . .,Bn, initially 

all set to 0. The filter uses a group H of k independent hash functions h1, . . . , hk with range {1, . . . , n} that 

independently map each element in the universe to a random number uniformly over the range. (This optimistic 

assumption is standard and convenient for Bloom filter analyses.) Deleting elements from a Bloom filter cannot 

be done simply by changing ones back to zeros, as a single bit may correspond to multiple elements. To allow 

for deletions, a counting Bloom filter (CBF) uses an array of n counters instead of bits; the counters track the 

number of elements currently hashed to that location. 
 

II. RELATED WORK  

 

Bloom filters have an essential role in network services and consequently the growing importance of operations 

such as information retrieval, distributed databases, packet content inspection, and cooperative caching results in 

the wide applications of Bloom filters that provide set-membership queries based on a relatively easy hardware 

implementation. The main design tradeoffs are the number of hash functions used (driving the computational 
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overhead), the size of the filter and the error (collision) rate.[1]counting Bloom filter (CBF) generalizes a Bloom 

filter data structure so as to allow membership queries on a set that can be changing dynamically via insertions 

and deletions. [2]a pipelined Bloom filter consists of two groups of hash functions. The first stage always 

computes the hash values. By contrast, the second stage of hash functions only compute the hash values if in the 

first stage there is a match between the input and the signature sought.[4] compressing Bloom filters might lead 

to significant bandwidth savings at the cost of higher memory requirements (larger uncompressed filters) and 

some additional computation time to compress the filter that is sent across the network. We do not detail here all 

theoretical and practical issues analyzed. 

 

III. PROPOSED WORK  

 

In order to improve the comparison time of bloom filter, we use parallel prefix comparator to compare 

incoming data. The comparator’s design is elaborated which is based on using a novel parallel prefix tree .Each 

set or group of cells produces outputs that serve as inputs to the next set in the hierarchy, with the exception of 

set 1, whose outputs serve as inputs to several sets. 

 

Figure 1: Parallel prefix tree architecture 

Set 1 compares the N-bit operands A and B bit-by-bit, using a single level of N ψ type cells. The ψ type cells 

provide a termination flag Dk to cells in sets 2 and 4, indicating whether the computation should terminate. 

These cells compute (where 0 ≤ k ≤ N − 1). 

=   =   ⨁ 

 

   

Set 2 consists of Ʃ2 type cells, which combine the termination flags for each of the four ψ type cells from set 1 

(each 2-type cell combines the termination flags of one 4-b partition) using NOR-logic to limit the fan-in and 

fan-out to a maximum of four. The Ʃ2 type cells either continue the comparison for bits of lesser significance if 

all four inputs are 0s, or terminate the comparison if a final decision can be made. For 0 ≤ m ≤ N/4–1, there is a 

total of N/4 Ʃ2 type cells, all functioning in parallel 
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: C 2, m = COMP( 

4m + 3 

Di) 

 

 
 

Set 3 consists of Ʃ3 type cells, which are similar to Ʃ2-type cells, but can have more logic levels, different inputs, 

and carry different triggering points. A Ʃ3-type cell provides no comparison functionality; the cell’s sole 

purpose is to limit the fan-in and fan-out regardless of operand bit-width. 

∑ =  ,  =          , 

Set 4 consists of Ω-type cells, whose outputs control the select inputs of ɸ-type cells (two-input multiplexors) in 

set 5, which in turn drive both the left bus and the right bus. For an Ω-type cell and the 4-b partition to which the 

cell belongs, bitwise comparison outcomes from set 1 provide information about the more significant bits in the 

cell’s Ω type cells. The number of inputs in the Ω-type cells increases from left to right in each partition, ending 

with a fan-in of five. Thus, the Ω type cells in set 4 determine whether set 5 propagates the bitwise comparison 

codes. 

Set 5 consists of N ɸ-type cells (two-input, 2-b-wide multiplexers). One input is (AK, BK) and the other is 

hardwired to “00.” The select control input is based on the Ω-type cell output from set 4. They define the 2-b as 

the left-bit code (AK) and the right-bit code (BK), where all left-bit codes and all right-bit codes combine to form 

the left bus and the right bus, respectively. The output Fk1,0 denotes the “greater-than,” “less-than,” or “equal 

to” final comparison decision Essentially, the 2-b code F1,0 k can be realized by OR-ing all left bits and all right 

bits separately. 

 

IV. FPGA IMPLEMENTATION 

 

Our proposed bloom filter using novel comparator has been coded in Verilog HDL and implemented in Spartan 

3 FPGA board. The implementation and Xilinx simulation results listed below . The comparison between those 

two devices has been done based on the parameters like number of slices, number of IO’s, number of bonded 

IOBs, number of slice flip -flops and time consumption. 

s.no Parameter Existing Proposed 

    

1 Slice 69 59 

    

2 Lut 120 104 

    

After performing the synthesize process, the RTL schematic has been created automatically based on the 

functionality. The routing between the different cells can be viewed clearly by this schematic in figure 2. 
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Figure 2: RTL schematic 
 

V. SIMULATION RESULTS  

 

Figure 3 and 4 shows behavioural simulation of filter .and corresponding data rejection and insertion into the 

memory 

   

Figure 3: Data Insertion                        Figure 4: Data rejection 

 

VI. PERFORMANCE ANALYSIS 

 

The Figure 5 given below is shown that there is a considerable reduction in time and area based on the 

implementation results which have been done by using Spartan-3 processor. The proposed algorithm 

significantly reduces area consumption when compared to the existing system 
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Figure 5: comparison analysis 
 

VII. CONCLUSION 

 

In this brief, a new application of BFs has been proposed. The idea is to use high-speed low-power comparator 

in BFs to compare element set. In particular comparator structured as parallel prefix trees with repeated cells in 

the form of simple stages that are one gate level deep with a maximum fan-in of five and fan out of four, 

independent of the input bit width. simulation results shows our proposed bloom filter has improved 

performance in terms of both comparison time and memory protection . 
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